Advertisement

Journal of Electronic Materials

, Volume 35, Issue 2, pp 211–223 | Cite as

Synthesis optimization and characterization of multiwalled carbon nanotubes

  • Christian P. Deck
  • Gregg S. B. McKee
  • Kenneth S. Vecchio
Article

Abstract

The unique properties of carbon nanotubes (CNTs) have suggested applications in a variety of fields. Multiwalled nanotubes were synthesized using chemical vapor deposition (CVD) procedures and subsequently characterized. Reaction parameters such as catalyst type and carrier gas flow rate were optimized to produce well-aligned multiwalled nanotubes with lengths between a few microns to several millimeters. Characterization was performed with scanning electron microscopy (SEM), transmission electron microscopy (TEM), x-ray diffraction (XRD), energy dispersive x-ray spectroscopy (EDS), thermo-gravimetric analysis, and Raman spectroscopy, focusing on composition and purity. Results show the synthesis of high-purity nanotubes of several millimeters in length from iron, nickel, cobalt, and titanium carbide catalysts with thermal stability to above 550°C.

Key words

Carbon nanotubes chemical vapor deposition scanning electron microscopy transmission electron microscopy x-ray diffraction energy dispersive x-ray spectroscopy Raman spectroscopy thermo-gravimetric analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Iijima,Nature 354, 56 (1991).CrossRefGoogle Scholar
  2. 2.
    E. Hernández and A. Rubio,Scientific Highlight Month 48, (1999).Google Scholar
  3. 3.
    J.-P. Salvetat, A.J. Kulik, J.-M. Bonard, G.A.D. Briggs, T. Stöckli, K. Metenier, S. Bonnamy, F. Beguin, N.A. Burnham, and L. Forró,Adv. Mater. 11, 161 (1999).CrossRefGoogle Scholar
  4. 4.
    A. Krishnan, E. Dujardin, T.W. Ebbesen, P.N. Yianilos, and M.M.J. Treacy,Phys. Rev. B: Condens. Matter Mater. Phys. 58, 14013 (1998).Google Scholar
  5. 5.
    R.S. Ruoff and D.C. Lorents,Carbon 33, 925 (1995).CrossRefGoogle Scholar
  6. 6.
    M.-F. Yu, B.S. Files, S. Arepalli, and R.S. Ruoff,Phys. Rev. Lett. 84, 5552 (2000).CrossRefGoogle Scholar
  7. 7.
    M.S. Dresselhaus, G. Dresselhaus, and R. Saito,Carbon 33, 883 (1995).CrossRefGoogle Scholar
  8. 8.
    P.G. Collins, M. Hersam, M. Arnold, R. Martel, and P. Avouris,Phys. Rev. Lett. 86, 3128 (2001).CrossRefGoogle Scholar
  9. 9.
    A. Rochefort, D.R. Salahub, and P. Avouris,J. Phys. Chem. B 103, 641 (1999).CrossRefGoogle Scholar
  10. 10.
    G.D. Li, Z.K. Tang, N. Wang, and J.S. Chen,Carbon 40, 917 (2002).CrossRefGoogle Scholar
  11. 11.
    G. Eres, A.A. Puretzky, D.B. Geohegan, and H. Cui,Appl. Phys. Lett. 84, 1759 (2004).CrossRefGoogle Scholar
  12. 12.
    C.J. Lee, S.C. Lyu, H.-W. Kim, C.-Y. Park, and C.-W. Yang,Chem. Phys. Lett. 359, 109 (2002).CrossRefGoogle Scholar
  13. 13.
    D. Qian, E.C. Dickey, R. Andres, and T. Rantell,Appl. Phys. Lett. 76, 2868 (2000).CrossRefGoogle Scholar
  14. 14.
    R. Andrews, D. Jacques, A.M. Rao, T. Rantell, F. Derbyshire, Y. Chen, J. Chen, and R.C. Haddon,Appl. Phys. Lett. 75, 1329 (1999).CrossRefGoogle Scholar
  15. 15.
    D. Qian and E.C. Dickey,J. Microsc.-Oxford 204, 39 (2001).CrossRefGoogle Scholar
  16. 16.
    V. Derycke, R. Martel, J. Appenzeller, and P. Avouris,Nano Lett. 1, 453 (2001).CrossRefGoogle Scholar
  17. 17.
    R. Martel, V. Derycke, J. Appenzeller, S. Wind, and P. Avouris, “Carbon Nanotube Field-Effect Transistors Logic Circuits” 94, inProc. of 39th Design Automation Conf., 2002, pp. 94–98.Google Scholar
  18. 18.
    S.J. Tans, R.M. Verschueren, and C. Dekker,Nature 393, 49 (1998).CrossRefGoogle Scholar
  19. 19.
    L.A. Chernozatonskii, Y.V. Gulyaev, Z.J. Kosakovskaja, N.I. Sinitsyn, G.V. Torgashov, Y.F. Zakharchenko, E.A. Fedorov, and V.P. Valchuk,Chem. Phys. Lett. 233, 63 (1995).CrossRefGoogle Scholar
  20. 20.
    W.A. de Heer, A. Chatelain, and D. Ugarte,Science 270, 1179 (1995).CrossRefGoogle Scholar
  21. 21.
    A.G. Rinzler, J.H. Hafner, P. Nikolaev, L. Lou, S.G. Kim, D. Tomanek, P. Nordlander, D.T. Colbert, and R.E. Smalley,Science 269, 1550 (1995).CrossRefGoogle Scholar
  22. 22.
    H.-M. Cheng, Q.-H. Yang, and C. Liu,Carbon 39, 1447 (2001).CrossRefGoogle Scholar
  23. 23.
    M.G. Nijkamp, J.E.M.J. Raaymakers, A.J. van Dillen, and K.P. de Jong,Appl. Phys. A A72, 619 (2001).CrossRefGoogle Scholar
  24. 24.
    X. Li, H. Zhu, L. Ci, C. Xu, Z. Mao, B. Wei, J. Liang, and D. Wu,Carbon 39, 2077 (2001).CrossRefGoogle Scholar
  25. 25.
    E.G. Gamaly and T.W. Ebbesen,Phys. Rev. B: Condens. Matter Mater. Phys. 52, 2083 (1995).Google Scholar
  26. 26.
    Y. Saito, K. Nishikubo, K. Kawabata, and T. Matsumoto,J. Appl. Phys. 80, 3062 (1996).CrossRefGoogle Scholar
  27. 27.
    Y. Saito and S. Uemura,Carbon 38, 169 (2000).CrossRefGoogle Scholar
  28. 28.
    T. Guo, P. Nikolaev, A. Thess, D.T. Colbert, and R.E. Smalley,Chem. Phys. Lett. 243, 49 (1995).CrossRefGoogle Scholar
  29. 29.
    N. Braidy, M.A. El Khakani, and G.A. Botton,Carbon 40, 2835 (2002).CrossRefGoogle Scholar
  30. 30.
    P.C. Eklund, B.K. Pradhan, U.J. Kim, Q. Xiong, J.E. Fischer, A.D. Friedman, B.C. Holloway, K. Jordan, and M.W. Smith,Nano Lett. 2, 561 (2002).CrossRefGoogle Scholar
  31. 31.
    R.L.V. Wal, T.M. Ticich, and V.E. Curtis,Chem. Phys. Lett. 323, 217 (2000).CrossRefGoogle Scholar
  32. 32.
    R.L. Vander Wal,Carbon 40, 2101 (2002).CrossRefGoogle Scholar
  33. 33.
    L. Yuan, K. Saito, C. Pan, F.A. Williams, and A.S. Gordon,Chem. Phys. Lett. 340, 237 (2001).CrossRefGoogle Scholar
  34. 34.
    A.T. Matveev, D. Golberg, V.P. Novikov, L.L. Klimkovich, and Y. Bando,Carbon 39, 155 (2001).CrossRefGoogle Scholar
  35. 35.
    M. Endo, K. Takeuchi, S. Igarashi, K. Kobori, M. Shiraishi, and H.W. Kroto,J. Phys. Chem. Solids 54, 1841 (1993).CrossRefGoogle Scholar
  36. 36.
    Z.P. Huang, D.Z. Wang, J.G. Wen, M. Sennett, H. Gibson, and Z.F. Ren,Appl. Phys. A 74, 387 (2002).CrossRefGoogle Scholar
  37. 37.
    J.-B. Park, G.-S. Choia, Y.-S. Choa, S.-Y. Honga, D. Kima, S.-Y. Choib, J.-H. Leeb, and K.-I. Cho,J. Cryst. Growth 244, 211 (2002).CrossRefGoogle Scholar
  38. 38.
    Y. Soneda, L. Duclaux, and F. Beguin,Carbon 40, 965 (2002).CrossRefGoogle Scholar
  39. 39.
    M. Shao, Q. Li, J. Wu, B. Xie, S. Zhang, and Y. Qian,Carbon 40, 2961 (2002).CrossRefGoogle Scholar
  40. 40.
    P.D. Kichambare, D. Qian, E.C. Dickey, and C.A. Grimes,Carbon 40, 1903 (2002).CrossRefGoogle Scholar
  41. 41.
    A.K.M. Fazle Kibria, Y.H. Mo, K.S. Nahm, and M.J. Kim,Carbon 40, 1241 (2002).CrossRefGoogle Scholar
  42. 42.
    Z. Li, J. Chen, X. Zhang, Y. Li, and K.K. Fung,Carbon 40, 409 (2002).CrossRefGoogle Scholar
  43. 43.
    M. Yudasaka, R. Kikuchi, Y. Ohki, E. Ota, and S. Yoshimura,Appl. Phys. Lett. 70, 1817 (1997).CrossRefGoogle Scholar
  44. 44.
    E.F. Kukovitsky, S.G. L’vov, N.A. Sainov, and V.A. Shustov,Appl. Surf. Sci. 215, 201 (2003).CrossRefGoogle Scholar
  45. 45.
    C.J. Lee, J. Park, J.M. Kim, Y. Huh, J.Y. Lee, and K.S. No,Chem. Phys. Lett. 327, 277 (2000).CrossRefGoogle Scholar
  46. 46.
    C.J. Lee, D.W. Kim, T.J. Lee, Y.C. Choi, Y.S. Park, Y.H. Lee, W.B. Choi, N.S. Lee, G.-S. Park, and J.M. Kim,Chem. Phys. Lett. 312, 461 (1999).CrossRefGoogle Scholar
  47. 47.
    M. Meyyappan, L. Delzeit, A. Cassell, and D. Hash,Plasma Sources Sci. Trans. 12, 205 (2003).CrossRefGoogle Scholar
  48. 48.
    Z.P. Huang, J.W. Xu, Z.F. Ren, J.H. Wang, M.P. Siegal, and P.N. Provencio,Appl. Phys. Lett. 73, 3845 (1998).CrossRefGoogle Scholar
  49. 49.
    M. Chen, C.-M. Chen, and C.-F. Chen,J. Mater. Sci. 37, 3561 (2002).CrossRefGoogle Scholar
  50. 50.
    M. Chhowalla, K.B.K. Teo, C. Ducati, N.L. Rupesinghe, G.A.J. Amaratunga, A.C. Ferrari, D. Roy, J. Robertson, and W.I. Milne,J. Appl. Phys. 90, 5308 (2001).CrossRefGoogle Scholar
  51. 51.
    J.-H. Han et al.,Thin Solid Films 409, 120 (2002).CrossRefGoogle Scholar
  52. 52.
    Z.F. Ren, Z.P. Huang, J.W. Xu, J.H. Wang, P. Bush, M.P. Siegal, and P.N. Provencio,Science 282, 1105 (1998).CrossRefGoogle Scholar
  53. 53.
    K.S. Choi, Y.S. Cho, S.Y. Hong, J.B. Park, and D.J. Kim,J. Eur. Ceram. Soc. 21, 2095 (2001).CrossRefGoogle Scholar
  54. 54.
    D.-C. Li, L. Dai, S. Huang, A.W.H. Mau, and Z.L. Wang,Chem. Phys. Lett. 316, 349 (2000).CrossRefGoogle Scholar
  55. 55.
    G. Maohui and K. Sattler,Science 260, 515 (1993).CrossRefGoogle Scholar
  56. 56.
    R. Kamalakaran, M. Terrones, T. Seeger, P.K. Redlich, M. Ruhle, Y.A. Kim, T. Hayashi, and M. Endo,Appl. Phys. Lett. 77, 3385 (2000).CrossRefGoogle Scholar
  57. 57.
    M. Endo, Y.A. Kim, T. Takeda, S.H. Hong, T. Matusita, T. Hayashi, and M.S. Dresselhaus,Carbon 39, 2003 (2001).CrossRefGoogle Scholar
  58. 58.
    W.X. Chen, J.P. Tu, L.Y. Wang, H.Y. Gan, Z.D. Xu, and X.B. Zhang,Carbon 41, 215 (2003).CrossRefGoogle Scholar
  59. 59.
    C. Emmenegger, J.-M. Bonard, P. Mauron, P. Sudan, A. Lepora, B. Grobety, A. Zuttel, and L. Schlapbach,Carbon 41, 539 (2003).CrossRefGoogle Scholar
  60. 60.
    ICDD/JCPDS Card Search,Google Scholar
  61. 61.
    X.L. Dong, C.J. Choi, and B.K. Kim,J. Appl. Phys. 92, 5380 (2002).CrossRefGoogle Scholar
  62. 62.
    R.T.K. Baker, J.J. Chludzinchi, Jr., N.S. Dudash, and A.J. Simoens,Carbon 21, 463 (1983).CrossRefGoogle Scholar
  63. 63.
    M. Hansen,Constitution of Binary Alloys (New York: McGraw-Hill, 1958), pp. 348–394.Google Scholar
  64. 64.
    Metallography, Structures and Phase Diagrams, vol. 8, The ASM Metals Handbook, ed. T. Lyman (ASM International, 1973), pp. 252–338.Google Scholar
  65. 65.
    Alloy Phase Diagrams, vol. 3, The ASM Metals Handbook, ed. M. Baker (ASM International, 1992), pp. 109–116.Google Scholar
  66. 66.
    C.-H. Kiang, I. Goddard, A. William, R. Beyers, and D.S. Bethune,Carbon 33, 903 (1995).CrossRefGoogle Scholar
  67. 67.
    S. Seraphin,J. Electrochem. Soc. 142, 290 (1995).CrossRefGoogle Scholar
  68. 68.
    D. Zhou, S. Seraphin, and S. Wang,Appl. Phys. Lett. 65, 1593 (1994).CrossRefGoogle Scholar
  69. 69.
    M.S. Dresselhaus, G. Dresselhaus, A. Jorio, A.G. Souza Filho, and R. Saito,Carbon 40, 2043 (2002).CrossRefGoogle Scholar
  70. 70.
    H.-B. Zhang, G.-D. Lin, Z.-H. Zhou, X. Dong, and T. Chen,Carbon 40, 2429 (2002).CrossRefGoogle Scholar

Copyright information

© TMS-The Minerals, Metals and Materials Society 2006

Authors and Affiliations

  • Christian P. Deck
    • 1
  • Gregg S. B. McKee
    • 1
  • Kenneth S. Vecchio
    • 1
  1. 1.Materials Science and Engineering ProgramUniversity of CaliforniaSan Diego, La Jolla

Personalised recommendations