, Volume 25, Issue 6, pp 1333–1342 | Cite as

A resource-based framework for establishing freshwater inflow requirements for the Suwannee River estuary

  • Robert A. MattsonEmail author


The availability of methods for establishing freshwater inflow requirements for estuaries lags behind those for establishing flow requirements in riverine ecosystems. Some of the basic principles and approaches for establishing riverine flow requirements may be applicable to estuaries. An emerging approach for establishing freshwater inflow needs for the Suwannee River estuary involves maintaining a natural inflow regime (in terms of magnitude, frequency, duration, and timing of freshwater flows) and identifying important habitat targets to be protected. The salinity-river flow conditions needed to sustain the habitat targets in their existing condition are then identified. A variety of tools are employed, such as salinity metrics, biological metrics, limits of distribution of communities or habitats, and landscape-scale characteristics to define the salinity and corresponding flow ranges needed to protect and maintain the resource targets. With this information, combined with use of models to evaluate flow-salinity relationships and various withdrawal scenarios, river flow criteria can be set which address the freshwater inflow requirements to maintain these ranges. Subsequentmonitoring and research is undertaken to evaluate the effectiveness of the river flow criteria in protecting the estuarine resource targets. This information can be used to subsequently confirm, refine, or modity the flow criteria.


Flow Requirement Instream Flow Riverine Ecosystem Resource Target Biological Metrics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Beck, M. W., M. Odaya, J. J. Bachant, J. Bergan, B. Keller, R. Martin, R. Mathews, C. Porter, andG. Ramseur. 2000. Identification of priority sites for conservation in the northern Gulf of Mexico: An ecoregional plan. Report prepared for the U.S. Environmental Protection Agency Gulf of Mexico Program. The Nature Conservancy, Arlington, Virginia. Scholar
  2. Beecher, H. A. 1990. Standards for instream flows.Rivers 1:97–109.Google Scholar
  3. Benke, A. C. 1990. A perspective on America's vanishing streams.Journal of North American Benthological Society 9:77–88.CrossRefGoogle Scholar
  4. Boesch, D. F. andR. E. Turner 1984. Dependence of fishery species on salt marshes: The role of food and refuge.Estuaries 7:460–468.CrossRefGoogle Scholar
  5. Browder, J. A. 1991. Watershed management and the importance of freshwater inflow to estuaries, p. 7–22.In S. F. Treat and P.A. Clark (eds.). Proceedings. Tampa Bay Area Scientific Information Symposium 2. TEXT, Tampa, Florida.Google Scholar
  6. Bulger, A. J., M. E. Monaco, D. M. Nelson, andM. G. McCormick-Ray. 1993. Biologically-based estuarine salinity zones derived from multivariate analysis.Estuaries 16:311–322.CrossRefGoogle Scholar
  7. Clewell, A. F., R. S. Beaman, C. L. Coultas, and M. E. Lasley. 1999. Suwannee River tidal marsh vegetation and its response to external variables and endogenous community processes. Report submitted to Suwannee River Water Management District, Live Oak, Florida.Google Scholar
  8. Day, Jr.,J. W., J. F. Martin, L. Cardoch, andP. H. Templet. 1997. System functioning as a basis for sustainable management of deltaic ecosystems.Coastal Management 25:115–153.Google Scholar
  9. Doering, P. H., R. H. Chamberlain, K. M. Donohue, andA. D. Steinman. 1999. Effect of salinity on the growth ofVallisneria americana Michx. from the Caloosahatchee estuary, Florida.Florida Scientist 62:89–105.Google Scholar
  10. Egan, T. 2001. Aug 12. More areas thirst as water dries up. Reprinted in Gainesville Sun; Sect A:1.Google Scholar
  11. Estevez, E. D. 2002. Review and assessment of biotic variables and analytical methods used in estuarine inflow studies. Estuaries 25:1291–1303.CrossRefGoogle Scholar
  12. Estevez, E. D. andM. J. Marshall. 1997. A landscape-level method to assess estuarine impacts of freshwater inflow alterations, p. 217–236.In S. F. Treat (ed.), Proceedings. Tampa Bay Area Scientific Information Symposium 3. Tampa Bay Regional Planning Council, Clearwater, Florida.Google Scholar
  13. Franklin, M. A., G. L. Giese, andP. R. Mixon. 1995. Statistical summaries of surface-water hydrologic data collected in the Suwannee River Water Management District, Florida, 1906–1993. Open-File Report 94-709. U.S. Geological Survey, Tallahassee, Florida.Google Scholar
  14. Frissell, C. A. andD. Bayles. 1996. Ecosystem management and the conservation of quatic biodiversity and ecological integrity.Water Resources Bulletin 32:229–240.Google Scholar
  15. Golder and Associates. 2000. Report on mapping low-salinity submerged aquatic vegetation beds in the lower Suwannee River. Report submitted to Suwannee River Water Management District, Live Oak, Florida.Google Scholar
  16. Good, J. C. andJ. M. Jacobs. 2001. Ecologically sustainable watershed management using annualized flow duration curves.In D. Phelps and G. Sehlke (eds.). CD version: Proceedings of the World Water and Environmental Resources Congress, May, 2001. American Society of Civil Engineers, Reston, Virginia.Google Scholar
  17. Hackney, C. T. andA. A. de la Cruz. 1978. Changes in interstitial water salinity of a Mississippi tidal marsh.Estuaries 1: 185–188.CrossRefGoogle Scholar
  18. Instream Flow Council. 2002. Instream flows for riverine resource stewardship. Instream Flow Council, U.S.Google Scholar
  19. Jacobs, J. M. andR. M. Vogel. 1998. Optimal allocation of water withdrawals in a river basin.Journal of Water Resources Planning and Management 124:357–363.CrossRefGoogle Scholar
  20. Jassby, A. D., W. J. Kimmerer, S. G. Monismith, C. Armor, J. E. Cloern, T. M. Powell, J. R. Schubel, andT. J. Vendlinski. 1995. Isohaline position as a habitat indicator for estuarine populations.Ecological Applications 5:272–289.CrossRefGoogle Scholar
  21. Johansson, J. O. R. andH. S. Greening. 2000. Seagrass restoration in Tampa Bay: A resource-based approach to estuarine management, p. 279–293.In S. A. Bortone (ed.). Seagrasses. Monitoring, Ecology, Physiology, and Management. CRC Press, Boca Raton, Florida.Google Scholar
  22. Jowett, I. G. 1997. Instream flow methods: A comparison of approaches.Regulated Rivers: Research and Management 13:115–127.CrossRefGoogle Scholar
  23. Karim, K., M. E. Gubbels, andI. C. Goulter. 1995. Review of determination of instream flow requirements with special application to Australia.Water Resources Bulletin 31:1063–1077.Google Scholar
  24. Light, H. M., M. R. Darst, L. J. Lewis, and D. A. Howell. 2002. Hydrology, vegetation and soils of riverine and tidal flood-plain forests of the Lower Suwannee River, Florida, and potential impacts of flow reductions. U.S. Geological Survey Open File Report 02-05. Tallahassee, Florida.Google Scholar
  25. Livingston, R. J., F. G. Lewis, G. C. Woodsum, X.-F. Niu, B. Galperin, W. Huang, J. D. Christensen, M. E. Monaco, T. A. Battista, C. J. Klein, R. L. Howell, IV, andG. L. Ray. 2000. Modelling oyster population response to variation in freshwater input.Estuarine, Coastal and Shelf Science 50:655–672.CrossRefGoogle Scholar
  26. McNulty, J. K., W. N. Lindall, Jr., andJ. E. Sykes. 1972. Cooperative Gulf of Mexico estuarine inventory and study, Florida: Phase I, Area description. National Oceanic and Atmospheric Administration Technical Report. National Marine Fisheries Service CIRC-368, U.S. Department of Commerce, Washington, D.C.Google Scholar
  27. Montague, C. L. andH. T. Odum. 1997. Setting and functions, p. 9–33.In C. L. Coultas and Y.-P. Hsieh (eds.), Ecology and Management of Tidal Marshes. A Model from the Gulf of Mexico. St. Lucie Press, Delray Beach, Florida.Google Scholar
  28. Montague, C. L. andR. G. Wiegert. 1990. Salt marshes, p. 481–516.In R. L. Myers and J. J. Ewel (eds.), Ecosystems of Florida. University of Central Florida Press, Orlando, Florida.Google Scholar
  29. Nordlie, F. G. 1990. Rivers and springs, p. 392–425.In R. L. Myers and J. J. Ewel (eds.), Ecosystems of Florida. University of Central Florida Press, Orlando, Florida.Google Scholar
  30. Odum, W. E., T. J. Smith, III,J. K. Hoover, andC. C. McIvor. 1984. The ecology of tidal freshwater marshes of the United States east coast: A community profile. FWS/OBS-83/17. U.S. Fish and Wildlife Service, Washington, D.C.Google Scholar
  31. Orlando, Jr.,S. P., L. P. Rozas, G. H. Ward, andC. J. Klein. 1993. Salinity characteristics of Gulf of Mexico estuaries. National Oceanic and Atmospheric Administration, Office of Ocean Resources, Conservation and Assessment, Silver Spring, Maryland.Google Scholar
  32. Patillo, M. E., T. E. Czapla, D. M. Nelson, andM. E. Monaco. 1997. Distribution of fishes and invertebrates in Gulf of Mexico estuaries. Volume II: Species life history summaries. ELMR Report No. 11. National Oceanic and Atmospheric Administration/National Ocean Service Strategic Environmental Assessments Division, Silver Spring, Maryland.Google Scholar
  33. Patton, D. J. andR. S. DeHan. 1998. Water issues: Global, National, state, ecosystem, p. 2–14.In E. A. Fernald and E. D. Purdum (eds.). Water Resources Atlas of Florida. Institute of Science and Public Affairs, Florida State University, Tallahassee, Florida.Google Scholar
  34. Pezeshki, S. R., R. D. DeLaune, andW. H. Patrick, Jr. 1987. Response of baldcypress (Taxodium distichum L. var.distichum) to increases in flooding salinity in Louisiana's Mississippi River deltaic plain.Wetlands 7:1–10.Google Scholar
  35. Poff, N. L., J. D. Allan, M. B. Bain, J. R. Karr, K. L. Prestegaard, B. D. Richter, R. E. Sparks, andJ. C. Stromberg. 1997. The natural flow regime. A paradigm for river conservation and restoration.Bioscience 47:769–784.CrossRefGoogle Scholar
  36. Richter, B. D., J. V. Baumgartner, J. Powell, andD. P. Braun. 1996. A method for assessing hydrologic alteration within ecosystems.Conservation Biology 10:1163–1174.CrossRefGoogle Scholar
  37. Richter, B. D., J. V. Baumgartner, R. Wigington, andD. P. Braun. 1997. How much water does a river need?Freshwater Biology 37:231–249.CrossRefGoogle Scholar
  38. Rozas, L. P. andC. T. Hackney. 1983. The importance of oligohaline estuarine wetland habitats to fisheries resources.Wetlands 3:77–89.CrossRefGoogle Scholar
  39. Rozas, L. P. andW. E. Odum. 1987a. Fish and macrocrustacean use of submerged plant beds in tidal freshwater marsh creeks.Marine Ecology Progress Series 38:101–108.CrossRefGoogle Scholar
  40. Rozas, L. P. andW. E. Odum. 1987b. The role of submerged aquatic vegetation in influencing the abundance of nekton on contiguous tidal fresh-water marshes.Journal of Experimental Marine Biology and Ecology 114:289–300.CrossRefGoogle Scholar
  41. Stalnaker, C., B. L. Lamb, J. Henriksen, K. Bovee, andJ. Bartholow. 1994. The Instream Flow Incremental Methodology. A Primer for IFIM. National Ecology Research Center, National Biological Survey, Ft. Collins, Colorado.Google Scholar
  42. Thorp, A. G., R. C. Jones, andD. P. Kelso. 1997. A comparison of water-column macroinvertebrate communities in beds of differing submersed aquatic vegetation in the tidal freshwater Potomac River.Estuaries 20:86–95.CrossRefGoogle Scholar
  43. Tillis, G. M. 2000. Flow and salinity characteristics of the upper Suwannee River estuary, Florida. Water-Resources Investigations Report 99-4268. U.S. Geological Survey, Tallahassee, Florida.Google Scholar
  44. Tiner, R. W. 1993. Field Guide to Coastal Wetland Plants of the Southeastern United States. University of Massachusetts Press, Amherst, Massachusetts.Google Scholar
  45. Vogel, R. M. andN. M. Fennessey. 1995. Flow duration curves II: A review of applications in water resources planning.Water Resources Bulletin 31:1029–1039.Google Scholar
  46. Wade, J. 1991. Maintenance and restoration of freshwater flows to estuaries for fisheries habitat purposes. Report by the Center for Governmental Responsibility, College of Law. University of Florida, Gainesville, Florida.Google Scholar
  47. Walters, C. J. andC. S. Holling. 1990. Large-scale management experiments and learning by doing.Ecology 71:2060–2068.CrossRefGoogle Scholar
  48. Ward, J. V. andJ. A. Stanford. 1983. The serial discontinuity concept of lotic ecosystems, p. 29–42.In T. D. Fontaine, III and S. M. Bartell (eds.). Dynamics of Lotic Ecosystems. Ann Arbor Science, Ann Arbor, Michigan.Google Scholar
  49. Weinstein, M. P. 1979. Shallow marsh habitats as primary nurseries for fishes and shellfish, Cape Fear River, North Carolina.Fishery Bulletin 77:399–357.Google Scholar
  50. Wharton, C. H., W. M. Kitchens, E. C. Pendleton, andT. W. Snipe. 1982. The ecology of bottomland hardwood swamps of the southeast: A community profile. FWS/OBS-81/37, U.S. Fish and Wildlife Service, Biological Services Program, Washington, D.C.Google Scholar
  51. Williams, K., K. C. Ewel, R. P. Stumpf, F. E. Putz, andT. W. Workman. 1999. Sea-level rise and coastal forest retreat on the west coast of Florida, USA.Ecology 80:2045–2063.Google Scholar
  52. Williams, K., M. V. Meads, andD. A. Sauerbrey. 1998. The roles of seedling salt tolerance and resprouting in forest zonation on the west coast of Florida, USA.American Journal of Botany 8:1745–1752.CrossRefGoogle Scholar

Sources of Unpublished Materials

  1. Lettman, S. personal communication. Northwest Florida Water Management District, 81 Water Management Drive, Havana, Florida 32333.Google Scholar

Copyright information

© Estuarine Research Federation 2002

Authors and Affiliations

  1. 1.Suwannee River Water Management DistrictLive Oak

Personalised recommendations