Advertisement

Estuaries

, Volume 25, Issue 6, pp 1088–1096 | Cite as

The influence of sulfides on soluble organic-Fe(III) in anoxic sediment porewaters

  • M. TaillefertEmail author
  • V. C. Hover
  • T. F. Rozan
  • S. M. Theberge
  • G. W. Luther
Article

Abstract

Solid and colloidal iron oxides are commonly involved in early diagenesis. More readily available soluble Fe(III) should accelerate the cycling of iron (Fe) and sulfur (S) in sediments. Experiments with synthetic solutions (Taillefert et al. 2000) showed that soluble Fe(III) (i.e., <50 nm diameter) reacts at a mercury voltammetric electrode at circumneutral pH if it is complexed by an organic ligand. The reactivity of soluble organic-Fe(III) with sulfide is greatly increased compared to its solid equivalent (e.g., amorphous hydrous iron oxides or goethite). We report here data from two different creeks of the Hackensack Meadowlands District (New Jersey) collected with solid state Au/Hg voltammetric microelectrodes and other conventional techniques, which confirm the existence of soluble organic-Fe(III) in sediments and its interaction with sulfide. Chemical profiles in these two anoxic sediments show the interaction between iron and sulfur during early diagenesis. Soluble organic-Fe(III) and Fe(II) are dominant in a creek where sulfide is negligible. This dominance suggests that the reductive dissolution of iron oxides goes through the dissolution of solid Fe(III), then reduction to Fe(II), or that soluble organic-Fe(III) is formed by chemical or microbial oxidation of organic-Fe(II) complexes. In a creek sediment where sulfide occurs in significant concentration, the reductive dissolution of Fe(III) is followed by formation of FeS(aq), which further precipitates. Dissolved sulfide may influence the fate of soluble organic-Fe(III), but the pH may be the key variable behind this process. The high reactivity of soluble organic-Fe(III) and its mobility may result in the shifting of local reactions, at depths where other electron acceptors are used. These data also suggest that estuarine and coastal sediments may not always be at steady state.

Keywords

Iron Oxide Electron Acceptor Natural Organic Matter Local Reaction Coastal Sediment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Amirbahman, A., L. Sigg, andU. von Gunten. 1997. Reductive dissolution of Fe(III) (Hydr)oxides by cysteine: Kinetics and mechanism.Journal of Colloid and Interface Science 194:194–206.CrossRefGoogle Scholar
  2. Arnold, R. G., T. J. DiChristina, andM. R. Hoffmann. 1986. Inhibitor studies of dissimilative Fe(III) reduction byPseudomonas sp. strain 200 (“Pseudomonas ferrireductans”).Applied and Environmental Microbiology 52:281–289.Google Scholar
  3. Arnold, R. G., T. J. DiChristina, andM. R. Hoffmann. 1988. Reductive dissolution of Fe(III) oxides byPseudomonas sp. 200.Biotechnology and Bioengineering 32:1081–1096.CrossRefGoogle Scholar
  4. Bondietti, G., J. Sinniger, andW. Stumm. 1993. The reactivity of Fe(III) (hydr)oxides: Effects of ligands in inhibiting the dissolution.Colloids and Surfaces 79:157–174.CrossRefGoogle Scholar
  5. Brendel, P. J. andG. W. Luther, III. 1995. Development of a gold amalgam voltametric microelectrode for the determination of dissolved Fe, Mn, O2, and S(-II) in pore waters of marine and freshwater sediments.Environmental Science and Technology 29:751–761.CrossRefGoogle Scholar
  6. Bull, D. C. andM. Taillefert. 2001. Seasonal and topographic variations in porewaters of a southeastern USA salt marsh as revealed by voltammetric profiling.Geochemical Transactions 13:1–8.Google Scholar
  7. Canfield, D. E. 1989. Reactive iron in marine sediments.Geochimica et Cosmochimica Acta 53:619–632.CrossRefGoogle Scholar
  8. Cutter, G. A. andD. J. Velinsky. 1988. Temporal variations of sedimentary sulfur in a Delaware salt marsh.Marine Chemistry 23:311–327.CrossRefGoogle Scholar
  9. Davison, W., J. Buffle, andR. De Vitre. 1988. Direct polarographic determination of O2, Fe(II), Mn(II), S(-II), and related species in anoxic waters.Pure Applied Chemistry 60:1535–1543.CrossRefGoogle Scholar
  10. Deng, Y. andW. Stumm. 1994. Reactivity of aquatic iron(III) oxyhydroxides—Implications for redox cycling of iron in natural waters.Applied Geochemistry 9:23–36.CrossRefGoogle Scholar
  11. Dollhopf, M. E., K. H. Nealson, D. M. Simon, andG. W. Luther, III. 2000. Kinetics of Fe(III) and Mn(IV) reduction by the Black Sea strain ofShewanella putrefaciens using in situ solid state voltametric Au/Hg electrodes.Marine Chemistry 70:171–180.CrossRefGoogle Scholar
  12. Dos Santos Afonso, M. andW. Stumm. 1992. Reductive disolution of iron(III) (hydr)oxides by hydrogen sulfide.Langmuir 8:1671–1675.CrossRefGoogle Scholar
  13. Eckerrot, A. andK. Pettersson. 1993. Pore water phosphorous and iron concentrations in a shallow, eutrophic lake—Indications of bacterial regulation.Hydrobiology 253:165–177.CrossRefGoogle Scholar
  14. Ferdelman, T. G., T. M. Church, andG. W. Luther, III. 1991. Sulfur enrichment of humic substances in a Delaware salt marsh sediment core.Geochimica et Cosmochimica Acta 55:979–988.CrossRefGoogle Scholar
  15. Henneke, E., G. W. Luther, III, andG. J. de Lange. 1991. Determination of inorganic sulphur speciation with polarographic techniques: Some preliminary results for recent hypersaline anoxic sediments.Marine Geology 100:115–123.CrossRefGoogle Scholar
  16. Huettel, M., W. Ziebis, S. Forster, andG. W. Luther, III. 1998. Advective transport affecting metal and nutrient distributions and interfacial fluxes in permeable sediments.Geochimica et Cosmochimica Acta 62:613–631.CrossRefGoogle Scholar
  17. Kosta, J. E. andG. W. Luther, III. 1994. Partitioning and speciation of solid phase iron in saltmarsh sediments.Geochimica et Cosmochimica Acta 58:1701–1710.CrossRefGoogle Scholar
  18. Lakind, J. S. andA. T. Stone. 1989. Reductive dissolution of goethite by phenolic reductants.Geochimica et Cosmochimica Acta 53:961–971.CrossRefGoogle Scholar
  19. Liang, L., J. F. McCarthy, L. W. Jolley, J. A. McNabb, andT. L. Melhorn. 1993. Iron dynamics: Transformation of Fe(II)/Fe(III) during injection of natural organic matter in a sandy aquifer.Geochimica et Cosmochimica Acta 57:1987–1999.CrossRefGoogle Scholar
  20. Lord, III,C. J. andT. M. Church. 1983. The geochemistry of salt marshes: Sedimentary ion diffusion, sulfate reduction, and pyritization.Geochimica et Cosmochimica Acta 47:1381–1391.CrossRefGoogle Scholar
  21. Lovley, D. R. andE. J. P. Phillips. 1986. Organic matter mineralization with reduction of ferric iron in anaerobic sediments.Applied Environmental Microbiology 51:683–689.Google Scholar
  22. Lovley, D. R. andJ. C. Woodward. 1996. Mechanisms for chelator simulation of microbial Fe(III)-oxide reduction.Chemical Geology 132:19–24.CrossRefGoogle Scholar
  23. Lowe, K. L., T. J. DiChristina, A. N. Roychoudhury, andP. Van Cappellen. 2000. Microbiological and geochemical characterization of microbial Fe(III) reduction in salt marsh sediments.Geomicrobiology Journal 17:163–178.CrossRefGoogle Scholar
  24. Luther, III,G. W., P. J. Brendel, B. L. Lewis, B. Sundby, L. Lefrançois, N. Silverberg, andD. B. Nuzzio. 1998. Simultaneous measurement of O2, Mn, Fe, I, and S(-II) in marine pore waters with a solid-state voltametric microelectrode.Limnology and Oceanography 43:325–333.CrossRefGoogle Scholar
  25. Luther, III,G. W. andT. M. Church. 1988. Seasonal cycling of sulfur and iron in pore waters of a Delaware salt marsh.Marine Chemistry 23:295–309.CrossRefGoogle Scholar
  26. Luther, III.G. W., T. Ferdelman, andE. Tsamakis. 1988. Evidence suggesting anaerobic oxidation of the bisulfide ion in Chesapeake Bay.Estuaries 11:281–285.CrossRefGoogle Scholar
  27. Luther, III,G. W., J. E. Køstka, T. M. Church, B. Sulzberger, andW. Stumm. 1992. Seasonal iron cycling in the salt-marsh sedimentary environment: The importance of ligand complexes with Fe(II) and Fe(III) in the dissolution of Fe(III) minerals and pyrite, respectively.Marine Chemistry 40:81–103.CrossRefGoogle Scholar
  28. Luther, III,G. W., C. E. Reimers, D. B. Nuzzio, andD. Lovalvo. 1999. In situ deployment of voltametric, potentiometric, and amperometric microelectrodes from a ROV to determine dissolved O2, Mn, Fe, S(-2), and pH in pore waters.Environmental Science and Technology 33:4352–4356.CrossRefGoogle Scholar
  29. Luther, III,G. W., P. A. Shellenbarger, andP. J. Brendel. 1996. Dissolved organic Fe(III) and Fe(II) complexes in saltmarsh porewaters.Geochimica et Cosmochimica Acta 60:951–960.CrossRefGoogle Scholar
  30. Millero, F. J. 1986. The thermodynamics and kinetics of the hydrogen sulfide system in natural waters.Marine Chemistry 18: 121–147.CrossRefGoogle Scholar
  31. Nambrini, G., J. Buffle, andW. Heardi. 1976. Voltammetric behavior of iron(III) hydrolyzed solutions and characterization of the reducible species.Journal of Colloids and Interface Science 57:327–336.CrossRefGoogle Scholar
  32. Nowack, B. andL. Sigg. 1996. Adsorption of EDTA and metal-EDTA complexes onto goethite.Journal of Colloids and Interface Science 177:106–121.CrossRefGoogle Scholar
  33. Pronk, J. T. andD. B. Johnson. 1992. Oxidation and reduction of iron by acidophilic bacteria.Geomicrobiology Journal 10:153–171.CrossRefGoogle Scholar
  34. Pyzik, A. J. andS. E. Sommer. 1981. Sedimentary iron monosulfides: Kinetics and mechanism of formation.Geochimica et Cosmochimica Acta 45:687–698.CrossRefGoogle Scholar
  35. Raiswell, R., F. Buckley, R. A. Berner, andT. F. Anderson. 1988. Degree of pyritization of iron as a paleoenvironmental indicator of bottom-water oxygenation.Journal of Sedimentology and Petrology 58:812–819.Google Scholar
  36. Rickard, D. T. 1974. Kinetics and mechanism of the sulfidation of goethite.American Journal of Science 274:941–952.CrossRefGoogle Scholar
  37. Rickard, D. 1997. Kinetics of pyrite formation by the H2S oxidation of iron (II) monosulfide in aqueous solutions between 25 and 125°C: The rate equation.Geochimica et Cosmochimica Acta 61:115–134.CrossRefGoogle Scholar
  38. Rickard, D. andG. W. Luther, III. 1997. Kinetics of pyrite formation by the H2S oxidation of iron (II) monosulfide in aqueous solutions between 25 and 125°C: The mechanism.Geochimica et Cosmochimica Acta 61:135–147.CrossRefGoogle Scholar
  39. Skoog, D. A. andJ. L. Leary. 1992. Principles of instrumental analysis, 4th edition. Saunders College Publishing, Fort Worth, Texas.Google Scholar
  40. Sorensen, J. andB. B. Jorgensen. 1987. Early diagenesis in sediments from Danish coastal waters: Microbial activity and Mn−Fe−S geochemistry.Geochimica et Cosmochimica Acta 51:1583–1590.CrossRefGoogle Scholar
  41. Stookey, L. L. 1970. Ferrozine: a new spectrophotometric reagent for iron.Analytical Chemistry 42:779–781.CrossRefGoogle Scholar
  42. Straub, K. L., M. Benz, B. Shink, andF. Widdel. 1996. Anaerobic, nitrate-dependent microbial oxidation of ferrous iron.Applied and Environmental Microbiology 62:1458–1460.Google Scholar
  43. Stumm, W. 1997. Reactivity at the mineral-water interface: Dissolution and inhibition.Colloids and Surfaces A: Physicochemical and Engineering Aspects 120:143–166.CrossRefGoogle Scholar
  44. Sulzberger, B., D. Suter, C. Siffert, S. Banwart, andW. Stumm. 1989. Dissolution of Fe(III) (hydr)oxides in natural waters: Laboratory assessment on the kinetics controlled by surface coordination.Marine Chemistry 28:127–144.CrossRefGoogle Scholar
  45. Suter, D., S. Banwart, andW. Stumm. 1991. Dissolution of hydrous iron(III) oxides by reductive mechanisms.Langmuir 7: 809–813.CrossRefGoogle Scholar
  46. Taillefert, M., A. B. Bono, andG. W. Luther, III. 2000. Reactivity of freshly formed Fe(III) in synthetic solutions and (pore)waters: Voltametric evidence of an aging process.Environmental Science and Technology 34:2169–2177.CrossRefGoogle Scholar
  47. Taillefert, M., T. F. Rozan, B. T. Glazer, J. Herszage, andR. E. Trouwborst, andG. W. Luther, III. 2002. Seasonal variations of soluble organic-Fe(III) in sediment porewaters as revealed by voltametric microelectrodes, p. 247–264.In M. Taillefert and T. F. Rozan (eds.), Environmental Electrochemistry: Analyses of Trace Element Bigeochemistry, Volume 811. American Chemical Society, Washington D.C.Google Scholar
  48. Thampdrup, B., H. Fossing, andB. B. Jorgensen. 1994. Manganese, iron, and sulfur, cycling in a coastal marine sediment.Geochimica et Cosmochimica Acta 58:5115–5129.CrossRefGoogle Scholar
  49. Theberge, S. M. andG. W. Luther, III. 1997. Determination of the electrochemical properties of a soluble aqueous FeS species present in sulfidic solutions.Aquatic Geochemistry 3:191–211.CrossRefGoogle Scholar
  50. Von Gunten, U. andW. Schneider. 1991. Primary products of the oxygenation of iron(II) at an oxic-anoxic boundary: Nucleation, aggregation, and aging.Journal of Colloids and Interface Science 145:127–139.CrossRefGoogle Scholar
  51. Xu, K., S. C. Dexter, andG. W. Luther, III. 1997. Development of voltametric microelectrodes for use in corrosion studies.Corrosion 300:1–18.Google Scholar
  52. Zinder, B., G. Furrer, andW. Stumm. 1986. The coordination chemistry of weathering: II. Dissolution of Fe(III) oxides.Geochimica et Cosmochimica Acta 50:1861–1869.CrossRefGoogle Scholar

Copyright information

© Estuarine Research Federation 2002

Authors and Affiliations

  • M. Taillefert
    • 1
    Email author
  • V. C. Hover
    • 2
  • T. F. Rozan
    • 3
  • S. M. Theberge
    • 3
  • G. W. Luther
    • 3
  1. 1.School of Earth and Atmospheric SciencesGeorgia Institute of TechnologyAtlanta
  2. 2.Department of Geological SciencesRutgers UniversityNewark
  3. 3.College of Marine StudiesUniversity of DelawareLewes

Personalised recommendations