, Volume 26, Issue 1, pp 40–50 | Cite as

Impact of common reed,Phragmites australis, on essential fish habitat: Influence on reproduction, embryological development, and larval abundance of mummichog (Fundulus heteroclitus)



The invasion ofSpartina marshes by the common reed,Phragmites australis, along the east coast of the United States over the last several decades has been well documented, although we know little about the impact of this invasion on the fish fauna and the few published papers seem contradictory. During 1999–2000 (May–September) we evaluated the fish response to vegetation type (Phragmites australis veersusSpartina alterniflora) by monitoring several aspects of fish early life history (egg deposition, embryonic development, hatching success, and larval and juvenile abundance) in low salinity marshes in the Mullica River in southern New Jersey. The dominant fish species using the marsh surface,Fundulus heteroclitus (93% of total catch, n=996 individuals), reproduced in both vegetation types with eggs deposited in leaf axils near the base of the plant inSpartina and in broken stems ofPhragmites during both years. These eggs also undergo successful embryonic development to hatching in both vegetation types. Larval and juvenile (5–75 mm total length, but 95% < 34 mm TL) abundance of this species is much reduced onPhragmites-dominated (mean CUPE=0.02, n=7 ind) marsh surface relative toSpartina (mean CPUE=2.31). These findings, and similar results for fish abundance in 1997 and 1998, indicate that theSpartima marsh surface is likely essential fish habitat for this species because it provides habitat for larvae and small juveniles, whilePhragmites does not. ThePhragmites invasion in brackish marshes may be having deleterious effects on fish populations and possibly on predators that prey uponF. heteroclitus, and as a result, marsh secondary production.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Able, K. W. 1984. Variation in spawning site selection of the mummichog,Fundulus heteroclitus.Copeia 1984:522–525.CrossRefGoogle Scholar
  2. Able, K. W. 1999. Measures of juvenile fish habitat quality: Examples from a National Estuarine Research Reserve, p. 134–147.In L. R. Benaka (ed.), Fish Habitat: Essential Fish Habitat and Rehabilitation. American Fisheries Society, Symposium 22, Bethesda, Maryland.Google Scholar
  3. Able, K. W. andM. Castagna. 1975. Aspects of an undercribed reproductive behaivor inFundulus heterolitus (Pisces: Cyprinodontidae) from Virginia.Chesapeake Science 16:282–284.CrossRefGoogle Scholar
  4. Able, K. W. andM. P. Fahay. 1998. The First Year in the Life of Estuarine Fishes in the Middle Atlantic Bight. Rutgers University Press, New Burnswick, New Jersey.Google Scholar
  5. Able, K. W. andJ. D. Felley. 1986. Geographical variation inFundulus heteroclitus. Tests for concordance between egg and adult morphologies.American Zoologist 26:145–157.Google Scholar
  6. Able, K. W. andS. M. Hagan. 2000. Effects of common reed (Phragmites australis) invasion on marsh surface macrofauna: Response of fishes and decapod crustaceans.Estuaries 23:633–646.CrossRefGoogle Scholar
  7. Able, K. W. andD. Hata. 1984. Reproductive behavior in theFundulus heteroclitus-F. grandis complex.Copeia 1984:820–825.CrossRefGoogle Scholar
  8. Able, K. W., R. Lathrop, and M. P. Deluca. 1996. Background for research and monitoring in the Mullica River-Great Bay estuary. Rutgers University, Institute of Marine and Coastal Sciences Technical Report No. 96-07. New Brunswick, New Jersey.Google Scholar
  9. Amsberry, L. 1997. Factors regulating the invasion ofPhragmites australis into southern New England salt marshes. Master's Thesis, Brown University, Providence, Rhode Island.Google Scholar
  10. Amsberry, L., M. A. Baker, P. J. Ewanchuk, andM. D. Bertness. 2000. Clonal integration and the expansion ofPhragmites australis.Ecological Applications 10:1110–1118.CrossRefGoogle Scholar
  11. Angradi, T., S. M. Hagan, andK. W. Able. 2001. Vegetation type and the intertidal macroinvertebrate fauna of a brackish marsh:Phragmites vs.Spartina.Wetlands 21:75–92.CrossRefGoogle Scholar
  12. Armstrong, P. B. andJ. S. Child. 1965. Stages in the normal development ofFundulus heteroclitus.Biological Bulletin 128: 143–168.CrossRefGoogle Scholar
  13. Balon, E. K. 1990. Epigenesis of an epigeneticist: The development of some alternative concepts on the early ontogeny and evolution of fishes.Guelph Ichthological Review 1:1–48.Google Scholar
  14. Bart, D. andJ. M. Hartman. 2000. Environmental determinants ofPhragmites australis expansion in a New Jersey salt marsh: An experimental approach.Oikos 89:59–69.CrossRefGoogle Scholar
  15. Beck, M., K. Heck, K. W. Able, D. Childers, D. Eggleston, B. M. Gilanders, B. Halpren, C. Hays, K. Hoshino, T. Minello, R. Orth, P. Sheridan, andM. Weinstein. 2001. Identification, conservation and management of estuarine and marine nurseries for fish and invertebrates.Bioscience 51:633–641.CrossRefGoogle Scholar
  16. Benoit, L. K. andR. A. Askins. 1999. Impact of the spread ofPhragmites on the distribution of birds in Connecticut tidal marshes.Wetlands 19:194–208.CrossRefGoogle Scholar
  17. Blossey, B. andJ. F. McCauley. 2000. A plan for developing biological control ofPhragmites australis into North America.Wetlands Journal 12:23–28.Google Scholar
  18. Byrne, D. 1978. Life history of the spotfin killifish,Fundulus luciae (Pisces: Cyprinodontidae), in Fox Creek Marsh, Virginia.Estuaries 4:211–227.CrossRefGoogle Scholar
  19. Chambers, R. M., L. A. Meyerson, andK. Saltonstall. 1999. Expansion ofPhragmites australis into tidal wetlands of North America.Aquatic Botamy 64:261–273.CrossRefGoogle Scholar
  20. Copp, G. H. andV. Kovac. 1996. When do fish with indirect development become juveniles?.Canadian Journal of Fisheries and Aquatic Sciences 53:746–752.CrossRefGoogle Scholar
  21. Deegan, L. A., J. E. Hughes, andR. A. Rountree. 2000. Salt marsh ecosystem support of marine transient species, p. 333–365.In M. P. Weinstein and D. A. Kreeger (eds.), Concepts and Controversies in Tidal Marsh Ecology. Kluwer Academic Publishing, Dordrecht, The Netherlands.Google Scholar
  22. Dimichele, C. andD. A. Powers. 1982. LDH-B genotype-specific hatching times ofFundulus heteroclitus embryos.Nature 296: 563–564.CrossRefGoogle Scholar
  23. Fell, P., S. P. Weissbach, D. A. Jones, M. A. Fallon, J. A. Zeppieri, E. K. Faison, K. A. Lennon, K. J. Newberry, andL. K. Reddington. 1998. Does invasion of oligohaline tidal marshes by reed grass,Phragmites australis (Cav.) Trin. Ex Steud., affect the availability of prey sources for the mummichog,Fundulus heteroclitus L.?.Journal of Experimental Marine Biology and Ecology 222:59–77.CrossRefGoogle Scholar
  24. Ferren, W. R., R. E. Good, R. Walker, andJ. Arsenault. 1981. Vegetation and flora of Hog Islands, a brackish wetland in the Mullica River, New Jersey.Bartonia 48:1–10.Google Scholar
  25. Fuiman, L. A. andD. M. Higgs. 1997. Ontogeny, growth and the recruitment process, p. 225–250.In R. C. Chambers and E. A. Trippel (eds.), Early Life History and Recruitment in Fish Populations. chapman and Hall, London, U.K.Google Scholar
  26. Hardy, Jr., J. D. 1978. Development of Fishes of the Middle Atlantic Bight, Volume II. U.S. Deparmtent of the Interior, FWS/OBS-78/12. Washington, D.C.Google Scholar
  27. Haslam, S. M. 1969. Stem types inPhragmites communis (Cav.) Trin. Ex Steud.Annals of Botany 33:127–131.Google Scholar
  28. Jones, C. G., J. H. Lawton, andM. Shachak. 1994. Organisms as ecosystem engineers.Oihos 69:373–386.Google Scholar
  29. Kneib, R. T. 1984. Patterns of utilization of the intertidal salt marsh by larvae and juveniles ofFundulus heteroclitus (Linnaeus) andFundulus luciae (Baird).Journal of Experimental Marine Biology and Ecology 83:41–51.CrossRefGoogle Scholar
  30. Kneib, R. T. 1986. The role ofFundulus heteroclitus in salt marsh trophic dynamics.American Zoologist 26:259–69.Google Scholar
  31. Kneib, R. T. 1987. Predation risk and use of intertidal habitats by young fishes and shrimp.Ecology 68:379–386.CrossRefGoogle Scholar
  32. Kneib, R. T. 1991. Flume weir for quantitative collection of nekton from vegetated intertidal habitats.Marine Ecology Progress Series 75:29–38.CrossRefGoogle Scholar
  33. Kneib, R. T. 1997a. Early life stages of resident nekton in intertidal marshes.Estuaries 20:214–230.CrossRefGoogle Scholar
  34. Kneib, R. T.. 1997b. The role of tidal marshes in the ecology of estuarine nekton.Oceanography Marine Biology: Annual Review 35:163–220.Google Scholar
  35. Kneib, R. T. andA. E. Stiven. 1978. Growth, reproduction, and feeding ofFundulus heteroclitus (L.) on a North Carolina salt marsh.Journal of Experimental Marine Biology and Ecology 31: 121–140.CrossRefGoogle Scholar
  36. Leonard, L. A. andM. E. Luther. 1995. Flow hydrodynamics in tidal marsh canopies.Limnology and Oceanography 40:1474–1484.CrossRefGoogle Scholar
  37. Marteinsdottir, G. 1991. Early life history of the mummichog (Fundulus heteroclitus): Egg size variation and its significance in reproduction and survival of eggs and larvae. Ph.D. Dissertation. Rutgers University, New Brunswick, New Jersey.Google Scholar
  38. Marteinsdottir, G. andK. W. Able. 1988. Geographic variation in egg size among populations of the mummichog,Fundulus heteroclitus (Pisces: Fundulidae).Copeia 1988:471–478.CrossRefGoogle Scholar
  39. Marteinsdottir, G. andK. W. Able. 1992. Influence of egg size on embryos and larvae ofFundulus heteroclitus (L.).Journal of Fish Biology 41:883–896.CrossRefGoogle Scholar
  40. Meyer, D. L., J. M. Johnson, andJ. W. Gill. 2001. Comparison of nekton use ofPhragmites australis andSpartina alterniflora marshes in the Chesapeake Bay, U.S.A.,Marine Ecology Progress Series 209:71–83.CrossRefGoogle Scholar
  41. Minello, T. J. 1999. Nekton densities in shallow estuarine habitats of Texas and Louisiana and the identification of essential fish habitat, p. 43–75.In L. R. Benaka (ed.), Fish Habitat: Essential Fish Habitat and Rehabilitation. American Fisheries Society, Symposium 22, Bethesda, Maryland.Google Scholar
  42. NOAA (National Oceanic and Atmospheric Administration). 1996. Magnuson-Stevens Fishery Conservation and Management Act amended through 11 October 1996. National Marine Fisheries Service, National Oceanic and Atmospheric Administration Technical Memorandum NMFS-F/SPO-23. U.S. Department of Commerce, Washington, D.C.Google Scholar
  43. Psuty, N. P., M. P. De Luca, R. Lathrop, K. W. Able, S. Whitney, andJ. F. Grassle. 1993. The Mullica River—Great Bay National Estuarine Research Reserve: A unique opportunity for research, preservation and management, p. 1557–1568.In O. T. Magoon, W. S. Wilson, H. Converse, and L. T. Tobin (eds.), Coastal Zone 1993, Volume 2. Proceedings of the Eighth Symposium on Coastal and Ocean Management. American Society of Civil Engineers, New York.Google Scholar
  44. Raichel, D. 2001. The influence ofPhragmites dominance on marsh resident fish in the Hackensack Meadowlands. Master's Thesis, Rutgers University, New Brunswick, New Jersey.Google Scholar
  45. Raichel, D. L., K. W. Able, and J. M. Hartman. In press. The influence ofPhragmites (common reed) on the distribution, abundance and potential prey of a marsh resident fish in the Hackensack Meadowlands, New Jersey.Estuaries.Google Scholar
  46. Rooth, J. E. andL. Windham. 2000.Phragmites on death row: Is biocontrol really warranted?Wetland Journal 12:29–37.Google Scholar
  47. Stevenson, J. C., M. S. Kearney, andK. L. Sundberg. 2000. The health and long-term stability of natural and restored marshes in Chesapeake Bay, p. 709–735.In M. P. Weinstein and D. A. Kreeger (eds.), Concepts and Controversies in Tidal Marsh Ecology. Kluwer Academic Publishing, Dordrecht, The Netherlands.Google Scholar
  48. Talbot, C. W. andK. W. Able. 1984. Composition and distribution of larval fishes in New Jersey high marshes.Estuaries 7:434–443.CrossRefGoogle Scholar
  49. Taylor, M. H. 1984. Lunar synchronization of fish reproduction.Transactions of the American Fisheries Society 113:484–493.CrossRefGoogle Scholar
  50. Taylor, M. H. andL. Dimichele. 1980. Ovarian changes during the lunar spawning cycle ofFundulus heteroclitus.Copeia 1980: 118–125.CrossRefGoogle Scholar
  51. Taylor, M. H. andL. Dimichele. 1983. Spawning site utilization in a Delaware population ofFundulus heteroclitus (Pisces: Cyprinodontidae).Copeia 1983:719–725.CrossRefGoogle Scholar
  52. Taylor, M. H., L. Dimichele, andG. J. Leach. 1977. Egg stranding in the life cycle of the mummichog,Fundulus heteroclitus (Pisces: Cyprinodontidae).Copeia 1979:291–297.CrossRefGoogle Scholar
  53. Tupper, M. andK. W. Able. 2000. Habitat use, movements, and food habits of striped bass (Morone saxatilis) in Delaware Bay (U.S.A.): Comparison between a restored and a reference salt marsh.Marine Biology 137:1049–1058.CrossRefGoogle Scholar
  54. Wainright, S. C., M. P. Weinstein, K. W. Able, andC. A. Currin. 2000. Relative importance of benthic microalgae, phytoplankton and the detritus of smooth cordgrass (Spartina) and the common reed (Phragmites) to brackish marsh food webs.Marine Ecology Progress Series 200:77–91.CrossRefGoogle Scholar
  55. Weinstein, M. P. andJ. H. Balletto. 1999. Does the common reed,Phragmites australis, affect essential fish habitat?Estuaries 22:63–72.CrossRefGoogle Scholar
  56. Weinstein, M. P., S. Y. Litvin, K. L. Bosley, C. M. Fuller, andS. C. Wainright. 2000. The role of tidal salt marsh as an energy source for marine transient and resident finfishes: A stable isotope approach.Transactions of the American Fisheries Society 129:797–810.CrossRefGoogle Scholar
  57. Weisburg, S. B. andV. A. Lotrich. 1982. The importance of an infrequently flooded intertidal marsh surface as an energy source for the mummichog,Fundulus heteroclitus: An experimental approach.Marine Biology 66:307–310.CrossRefGoogle Scholar
  58. Windham, L. 1995. Effects ofPhragmites australis invasion on aboveground biomass and soil properties in brackish tidal marsh of Mullica River, New Jersey. Master Thesis, Rutgers University, New Brunswick, New Jersey.Google Scholar
  59. Windham, L. andR. Lathrop. 1999. Effects ofPhragmites australis (common reed) invasion on above-ground biomass and soil properties in brackish tidal marsh of the Mullica River, New Jersey.Estuaries 22:927–35.CrossRefGoogle Scholar
  60. Zar, J. H. 1984. Biostatistical Analysis. Prentice-Hall, Inc., Englewood Cliffs, New Jersey.Google Scholar

Sources of Unpublished Materials

  1. Sakowicz, G. P. Unpublished data. Rutgers University Marine Field Station, 800 Great Bay Boulevard, Tuckerton, New Jersey 08087.Google Scholar
  2. Windham, L. Personal communication. Department of Earth and Environmental Sciences, Lehigh University, Williams Hall 31, Bethlehem, Pennsylvania 18015.Google Scholar

Copyright information

© Estuarine Research Federation 2003

Authors and Affiliations

  1. 1.Marine Field Station, Institute of Marine and Coastal SciencesRutgers UniversityTuckerton

Personalised recommendations