Estuaries

, Volume 26, Issue 1, pp 1–11 | Cite as

Climatic influences on riverine nitrate flux: Implications for coastal marine eutrophication and hypoxia

  • Dubravko Justić
  • R. Eugene Turner
  • Nancy N. Rabalais
Article

Abstract

The average nitrate flux of the lower Mississippi River increased 3.3-fold between 1954–1967 and 1983–2000. During the same time period, the average nitrate concentration increased 2.3-fold while the average discharge increased 40%. Partitioning of the observed trend in nitrate flux among the two flux components, nitrate concentration and discharge, revealed that about 80% of the observed increase in flux could be explained by the increase in nitrate concentration. This indicates that a historical increase in the anthropogenic nutrient inputs has had a far greater impact on the lower Mississippi River nitrate flux than a change in climate. The influence of climatic factors on nitrate flux has been significant and may further increase as a result of global climate change. This argument is supported by two lines of evidence. The residual component of nitrate flux, obtained by removing a trend from the time series, is controlled primarily by the variability in discharge, i.e., climatic factors. Also, there is a highly significant relationship between discharge and nitrate concentration at the low end of the discharge spectrum (<13,000 m3 s−1). The differences in nitrate flux between flood and drought years are significantly larger than the variations in discharge. This makes the Mississippi River nitrate flux potentially sensitive to future changes in the frequency of extreme climatic events. Because of the importance of nitrate for the productivity of coastal phytoplankton, future climate change would likely have important implications for coastal marine eutrophication and hypoxia.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Alexander, R. B., P. S. Murdoch, andR. A. Smith. 1996. Streamflow-induced variations in nitrate flux in tributaries to the Atlantic Coastal Zone,Biogeochemistry 33:149–177.CrossRefGoogle Scholar
  2. Alexander, R. B., P. S. Murdoch, R. A. Smith, andG. E. Schwarz. 2000. Effect of stream channel size on the delivery of nitrogen to the Gulf of Mexico.Nature 403:758–761.CrossRefGoogle Scholar
  3. Andersson, L. andL. Rydberg. 1988. Trends in nutrient and oxygen conditions within the Kattegat: Effects on local nutrient supply.Estuarine, Coastal and Shelf Science 26:559–579.CrossRefGoogle Scholar
  4. Benović, T., D. Justić, andA. Bender. 1987. Enigmatic changes in the hydromedusan fauna of the northern Adriatic Sea.Nature 326:597–600.CrossRefGoogle Scholar
  5. Boesch, D. andN. N. Rabalais. 1991. Effects of hypoxia on continental shelf benthos: Comparison between the New York Bight and the northern Gulf of Mexico, p. 27–34.In R. V. Tyson and T. H. Pearson (eds.), Modern and Ancient Continental Shelf Anoxia. Special Publication No. 58. Geological Society, London, U.K.Google Scholar
  6. Bratkovich, A., S. P. Dinnel, andD. A. Goolsby. 1994. Variability and prediction of freshwater and nitrate fluxes for the Louisiana-Texas shelf: Mississippi and Atchafalaya River source functions.Estuaries 17:766–778.CrossRefGoogle Scholar
  7. Brezonik, P. L., V. J. Bierman, Jr.,R. Alexander, J. Anderson, J. Barko, M. Dortch, L. Hatch, G. L. Hitchcock, D. Keeney, D. Mulla, V. Smith, C. Walker, T. Whitledge, andW. J. Wiseman, Jr. 1999. Effects of reducing nutrient loads to surface waters within the Mississippi River Basin and the Gulf of Mexico. Topic 4 Report for the Integrated Assessment of Hypoxia in the Gulf of Mexico. NOAA Coastal Ocean Program Decision Analysis Series No. 18. National Oceanic and Atmospheric Administration Coastal Ocean Program, Silver Spring, Maryland.Google Scholar
  8. Caraco, N. F. andJ. J. Cole. 1999. human impact on nitrate export: An analysis using major world rivers.Ambio 28:167–170.Google Scholar
  9. Chesney, E. J. andD. M. Baltz. 2001. The effects of hypoxia on the northern Gulf of Mexico coastal ecosystem: A fisheries perspective, p. 321–354.In N. N. Rabalais and R. E. Turner (eds.), Coastal Hypoxia: consequences for Living Resources and Ecosystems. Coastal and Estuarine Studies 58, American Geophysical Union, Washington, D.C.Google Scholar
  10. Gooper, S. R. andG. S. Brush. 1991. Long-term history of Chesapeake Bay anoxia.Science 254:992–996.CrossRefGoogle Scholar
  11. Craig, J. K., L. B. Crowder, C. D. Gray, C. J. McDaniel, T. A. Henwood, andJ. G. Hanifen. 2001. Ecological effects of hypoxia on fish, sea turtles, and marine mammals in the northwestern Gulf of Mexico, p. 269–291.In N. N. Rabalais and R. E. Turner (eds.), Coastal Hypoxia: Consequences for Living Resources and Ecosystems. Coastal and Estuarine Studies 58, American Geophysical Union, Washington, D.C.Google Scholar
  12. D'Elia, C. J., J. G. Sanders, andW. R. Boynton. 1986. Nutrient enrichment studies in a coastal plain estuary: Phytoplankton growth in large-scale, continuous cultures.Canadian Journal of Fisheries and Aquatic Sciences 43:397–406.CrossRefGoogle Scholar
  13. Diaz, R. J. andR. Rosenberg. 1995. Marine benthic hypoxia: A review of its ecological effects and behavioral responses of benthic macrofauna.Oceanography and Marine Biology Annual Review 33:245–303.Google Scholar
  14. Diaz, R. J. andR. Rosenberg. 2001. Overview of anthropogenically-induced hypoxic effects on marine benthic fauna, p. 129–145.In N. N. Rabalais and R. E. Turner (eds.), Coastal Hypoxia: Consequences for Living Resources and Ecosystems. Coastal and Estuarine Studies 58, American Geophysical Union, Washington, D.C.Google Scholar
  15. Dinnel, S. andW. J. Wiseman, Jr. 1986. Freshwater on the Louisiana shelf.Continental Shelf Research 6:765–784.CrossRefGoogle Scholar
  16. Dortch, Q. 1994. Changes in phytoplankton number and species composition, p. 46–49.In M. J. Dowgiallo (ed.), Coastal Oceanographic Effects of Summer 1993 Mississippi River Flooding, National Oceanic and Atmospheric Administration Coastal Ocean Office/National Weather Service, Silver Spring, Maryland.Google Scholar
  17. Dortch, Q. andT. E. Whitledge. 1992. Does nitrogen or silicon limit phytoplankton production in the Mississippi River plume and nearby regions?Continental Shelf Research 12:1293–1309.CrossRefGoogle Scholar
  18. Dunn, D. D. 1996. Trends in nutrient inflows to the Gulf of Mexico from streams draining the conterminous United States 1972–1993. Water-Resources Investigations Report 96-4113. U.S. Geological Survey, Austin, Texas.Google Scholar
  19. Fly, L. L., Y. Enzel, V. R. Baker, andD. R. Cayan. 1993. A 5000-year record of extreme floods and climate change in the southwestern United States.Nature 262:410–412.Google Scholar
  20. Gaston, G. R. 1985. Effects of hypoxia on macrobenthos of the inner shelf off Cameron, Louisiana.Estuarine, Coastal and Shelf Science 20:603–613.CrossRefGoogle Scholar
  21. Giorgi, F., C. Shields-Brodeur, andT. Bates. 1994. Regional climate change scenarios produced with a nested regional climate model.Journal of Climate 7:375–399.CrossRefGoogle Scholar
  22. Goolsby, D. A., W. A. Battaglin, G. B. Lawrence, R. S. Artz, B. T. Aulenbach, R. P. Hooper, D. R. Keeney, andG. J. Stensland. 1999. Flux and sources of nutrients in the Mississippi-Atchafalaya River Basin. Topic 3 Report for the Integrated Assessment of Hypoxia in the Gulf of Mexico. NOAA Coastal Ocean Program Decision Analysis Series No. 17. National Oceanic and Atmospheric Administration Coastal Ocean Program, Silver Spring, Maryland.Google Scholar
  23. Hickel, W., P. Mangelsdorf, andJ. Berg. 1993. The human impact in the German Bight: Eutrophication during three decades (1962–1991).Helgolander Meeresunters 47:243–263.CrossRefGoogle Scholar
  24. Howarth, R. W. 1998. An assessment of human influences on fluxes of nitrogen from the terrestrial landscape to the estuaries and continental shelves of the North Atlantic Ocean.Nutrient Cycling in Agroecosystems 52:213–223.CrossRefGoogle Scholar
  25. Howarth, R. W., G. Billen, D. Swaney, A. Townsend, N. Jaworski, K. Lajtha, J. A. Downing, R. E. Elmgren, N. Caraco, T. Jordan, F. Berendse, J. Freney, V. Kudeyarov, P. Murdoch, andZ.-L. Zhu. 1996. Regional nitrogen budgets and riverine N and P fluxes for the drainages to the North Atlantic Ocean: Natural and human influences.Biogeochemistry 35:75–139.CrossRefGoogle Scholar
  26. Intergovernmental Panel on Climate Change (IPCC). 2001. Climate Change 2001: The Scientific Basis, Contribution of Working Group I to the Third Assessment Report. Cambridge University Press, Cambridge, U.K.Google Scholar
  27. Jones, P. D., M. New, D. E. Parker, S. Martin, andI. G. Rigor. 1999. Surface air temperature and its changes over the past 150 years.Reviews of Geophysics 37:173–199.CrossRefGoogle Scholar
  28. Justić, D., T. Legović, andL. Rottini-Sandrini. 1987. Trend in the oxygen content 1911–1984 and occurrence of benthic mortality in the northern Adriatic Sea.Estuarine, Coastal and Shelf Science 25:435–445.CrossRefGoogle Scholar
  29. Justić, D., N. N. Rabalais, andR. E. Turner. 1995a. Stoichiometric nutrient balance and origin of coastal eutrophication.Marine Pollution Bulletin 30:41–46.CrossRefGoogle Scholar
  30. Justić, D., N. N. Rabalais, andR. E. Turner. 1995a. Effects of climate change on hypoxia in coastal waters: A doubled CO2 scenario for the northern Gulf of Mexico.Limnology and Oceanography 41:992–1003.CrossRefGoogle Scholar
  31. Justić, D., N. N. Rabalais, andR. E. Turner. 1997. Impacts of climate change on net productivity of coastal waters: Implications for carbon budget and hypoxia.Climate Research 8: 225–237.CrossRefGoogle Scholar
  32. Justić, D., N. N. Rabalais, andR. E. Turner. 2002. Modeling the impacts of decadal changes in riverine nutrient fluxes on coastal eutrophication near the Mississippi River Delta.Ecological Modelling 152:33–46.CrossRefGoogle Scholar
  33. Justić, D., N. N. Rabalais, R. E. Turner, andQ. Dortch. 1995b. Changes in nutrient structure of river-dominated coastal waters: Stoichiometric nutrient balance and its consequences.Estuarine, Coastal and Shelf Science 40:339–356.CrossRefGoogle Scholar
  34. Knox, J. C. 1993. Large increases in flood magnitude in response to modest changes in climate.Nature 361:430–432.CrossRefGoogle Scholar
  35. Lins, H. F. andP. J. Michaels. 1994. Increasing U.S. streamflow linked to greenhouse forcing.Eos, Transactions, American Geophysical Union 75:281.CrossRefGoogle Scholar
  36. Lohrenz, S. E., G. L. Fahnenstiel, D. G. Redalje, G. A. Lang, X. Chen, andM. J. Dagg. 1997. Variations in primary production of northern Gulf of Mexico continental shelf waters linked to nutrient inputs from the Mississippi River.Marine Ecology Progress Series 55:435–454.Google Scholar
  37. Lohrenz, S. E., G. L. Fahnenstiel, D. G. Redalje, G. A. Lang, M. J. Dagg, T. E. Whitledge, andQ. Dortch. 1999. The interplay of nutrients, irradiance and mixing as factors regulating primary production in coastal waters impacted by the Mississippi River plume.Continental Shelf Research 19:1113–1141.CrossRefGoogle Scholar
  38. Meade, R. H. (ed.). 1995. Contaminants in the Mississippi River, 1987–1992. U.S. Geological Survey Circular 1133. U.S. Department of the Interior, U.S. Geological Survey, Denver, Colorado.Google Scholar
  39. Miller, J. R. andG. L. Russell. 1992. The impact of global warming on river discharge.Journal of Geophysical Research 97: 2757–2764.Google Scholar
  40. Milliman, J. D. andR. H. Meade. 1983. Worldwide delivery of river sediment to the ocean.Journal of Geology 91:1–21.CrossRefGoogle Scholar
  41. Officer, C. C., R. B. Biggs, J. L. Taft, L. E. Cronin, M. Tyler, andW. R. Boynton. 1984. Chesapeake Bay anoxia: Origin, development and significance.Science 223:22–27.CrossRefGoogle Scholar
  42. Pavella, J. S., J. L. Ross, andM. E. Chittenden, Jr. 1983. Sharp reduction in abundance of fishes and benthic macroinvertebrates in the Gulf of Mexico off Texas associated with hypoxia.Northeast Gulf Science 6:167–173.Google Scholar
  43. Pearson, T. andR. Rosenberg. 1992. Energy flow through the SE Kattegat: A comparative examination of the eutrophication of a coastal marine ecosystem.Netherlands Journal of Sea Research 28:317–334.CrossRefGoogle Scholar
  44. Peierls, B. L., N. Caraco, M. Pace, andJ. Cole. 1991. Human influence on river nitrogen.Nature 350:386–387.CrossRefGoogle Scholar
  45. Rabalais, N. N., D. E. Harper, andR. E. Turner. 2001. Responses of nekton and demersal and benthic fauna to decreasing oxygen concentrations, p. 115–128.In N. N. Rabalais and R. E. Turner (eds.), Coastal Hypoxia: Consequences for Living Resources and Ecosystems. Coastal and Estuarine Studies 58, American Geophysical Union, Washington, D.C.Google Scholar
  46. Rabalais, N. N. andR. E. Turner. 2001. Hypoxia in the northern Gulf of Mexico: Description, causes and change, p. 1–36.In N. N. Rabalais, and R. E. Turner (eds.), Coastal Hypoxia: Consequences for Living Resources and Ecosystems. Coastal and Estuarine Studies 58, American Geophysical Union, Washington, D.C.Google Scholar
  47. Rabalais, N. N., R. E. Turner, D. Justić, Q. Dortch, andW. J. Wiseman, Jr. 1999. Characterization of Hypoxia: Topic 1 Report for the Integrated Assessment of Hypoxia in the Gulf of Mexico. NOAA Coastal Ocean Program Decision Analysis Series. No. 15. NOAA Coastal Ocean Program, Silver Spring, Maryland.Google Scholar
  48. Rabalais, N. N., R. E. Turner, D. Justić, Q. Dortch, W. J. Wiseman, Jr., andB. K. Sen Gupta. 1996. Nutrient changes in the Mississippi River and system responses on the adjacent continental shelf.Estuaries 19:386–407.CrossRefGoogle Scholar
  49. Rabalais, N. N., R. E. Turner, andD. Scavia. 2002. Beyond science into policy: Gulf of Mexico hypoxia and the Mississippi River.BioScience 52:129–142.CrossRefGoogle Scholar
  50. Rabalais, N. N., R. E. Turner, W. J. Wiseman, Jr., andQ. Dortch. 1998. Consequences of the 1993 Mississippi River flood in the Gulf of Mexico.Regulated Rivers: Research and Management 14:161–177.CrossRefGoogle Scholar
  51. Renaud, M. L. 1986a. Hypoxia in Louisiana coastal waters during 1983: Implications for fisheries.Fishery Bulletin 84:19–26.Google Scholar
  52. Renaud, M. L. 1986b. Detecting and avoiding oxygen deficient sea water by brown shrimp,Penaeus aztecus (Ives) and white shrimpPenaeus setiferus (Linnaeus).Journal of Experimental Marine Biology and Ecology 98:283–292.CrossRefGoogle Scholar
  53. Rosenberg, R. 1985. Eutrophication—The future marine coastal nuisance?Marine Pollution Bulletin 16:227–231.CrossRefGoogle Scholar
  54. Smayda, T. J. 1990. Novel and nuisance phytoplankton blooms in the sea: Evidence for global epidemic, p. 29–40.In E. Graneli, B. Sundstrom, R. Edler, and D. M. Anderson (eds.), Toxic Marine Phytoplankton. Elsevier Science, New York.Google Scholar
  55. Stachowtisch, M. 1984. Mass mortality in the Gulf of Trieste: The course of community destruction.PSZNI: Marine Ecology 5:243–264.CrossRefGoogle Scholar
  56. Turner, R. E. andN. N. Rabalais. 1991. Changes in the Mississippi River water quality this century—Implications for coastal food webs.BioScience 41:140–147.CrossRefGoogle Scholar
  57. Turner, R. E. andN. N. Rabalais. 1994. Evidence for coastal eutrophication near the Mississippi River delta.Nature 368: 619–621.CrossRefGoogle Scholar
  58. Turner, R. E., N. N. Rabalais, andD. Justić. 1999. Long-term watershed and water quality changes in the Mississippi River system, p. 37–50.In W. J. Wiseman, Jr., N. N. Rabalais, M. Dagg, and T. E. Whitledge (eds.), Nutrient Ephanced Coastal Productivity in the Northern Gulf of Mexico. NOAA Coastal Ocean Program, Decision Analysis Series No. 14, NOAA Coastal Ocean Program, Silver Spring, Maryland.Google Scholar
  59. Vitousek, P. M., J. D. Aber, R. W. Howarth, G. E. Likens, P. A. Matson, D. W. Schindler, W. H. Schlesinger, andD. G. Tilman. 1997. Human alterations of the global nitrogen cycle: Sources and consequences.Ecological Applications 7:737–750.Google Scholar
  60. Wolock, D. M. andG. J. McCabe. 1999. Estimates of runoff using water-balance and atmospheric general circulation models.Journal of the American Water Resources Association 35: 1341–1350.CrossRefGoogle Scholar
  61. Zimmerman, R. J. andJ. Nance. 2001. Effects of hypoxia on the shrimp fishery of Louisiana and Texas, p. 293–310.In N. N. Rabalais and R. E. Turner (eds.), Coastal Hypoxia: Consequences for Living Resources and Ecosystems. Coastal and Estuarine Studies 58, American Geophysical Union, Washington, D.C.Google Scholar
  62. Zucker, L. A. andL. C. Brown. 1998. Agricultural drainage: Water quality impacts and subsurface drainage studies in the Midwest. Ohio State University Extension Bulletin 871. Ohio State University, Columbus, Ohio.Google Scholar

Copyright information

© Estuarine Research Federation 2003

Authors and Affiliations

  • Dubravko Justić
    • 1
  • R. Eugene Turner
    • 1
  • Nancy N. Rabalais
    • 2
  1. 1.Coastal Ecology Institute, and Department of Oceanography and Coastal SciencesLouisiana State UniversityBaton Rouge
  2. 2.Louisiana Universities Marine ConsortiumChauvin

Personalised recommendations