Non-equilibrium dynamics as an indispensable characteristic of a healthy biological system

  • Chung-Kang Peng
  • Sergey V. Buldyrev
  • Jeffrey M. Hausdorff
  • Shlomo Havlin
  • Joseph E. Mietus
  • Michael Simons
  • H. Eugene Stanley
  • Ary L. Goldberger
Papers Data Types And Results

Abstract

Healthy systems in physiology and medicine are remarkable for their structural variability and dynamical complexity. The concept of fractal growth and form offers novel approaches to understanding morphogenesis and function from the level of the gene to the organism. For example, scale-invariance and long-range power-law correlations are features of non-coding DNA sequences as well as of healthy heartbeat dynamics. For cardiac regulation, perturbation of the control mechanisms by disease or aging may lead to a breakdown of these long-range correlations that normally extend over thousands of heartbeats. Quantification of such long-range scaling alterations are providing new approaches to problems ranging from molecular evolution to monitoring patients at high risk of sudden death.

We briefly review recent work from our laboratory concerning the application of fractals to two apparently unrelated problems: DNA organization and beat-to-beat heart rate variability. We show how the measurement of long-range power-law correlations may provide new understanding of nucleotide organization as well as of the complex fluctuations of the heartbeat under normal and pathologic conditions.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Buldyrev, S.V., Goldberger, A.L., Havlin, S., Peng, C.-K., Simons, M., and Stanley, H.E., (1993a). Generalized Levy walk model for DNA nucleotide sequences.Physical Review E, 47: 4514–4523.CrossRefGoogle Scholar
  2. Buldyrev, S.V., Goldberger, A.L., Havlin, S., Peng, C.-K., Stanley, H.E. and Simons, M., (1993b). Fractal landscapes and molecular evolution: Modeling the myosin heavy chain gene family.Biophysical Journal, 65: 2673–2679.PubMedGoogle Scholar
  3. Cannon, W.B. (1929). Organization for physiological homeostasis.Physiology Reviews, 9: 399–431.Google Scholar
  4. Goldberger, A.L., Rigney, D.R. and West, B.J. (1990). Chaos and fractals in human physiology.Scientific American, 262: 42–49.PubMedCrossRefGoogle Scholar
  5. Goldberger, A.L. (1991). Is the normal heartbeat chaotic or homeostatic?News in Physiological Sciences, 6: 87–91.PubMedGoogle Scholar
  6. Havlin, S., Selinger, R.B., Schwartz, M., Stanley, H.E. and Bunde, A. (1988). Random multiplicative processes and transport in structures with correlated spatial disorder.Physical Review Letters, 61: 1438–1441.PubMedCrossRefGoogle Scholar
  7. Lipsitz, L.A. and Goldberger, A.L. (1993). Loss of “complexity” and aging. Potential applications of fractals and chaos theory to senescence.Journal of the American Medical Association, 267: 1806–1809.CrossRefGoogle Scholar
  8. Montroll, E.W. and Shlesinger, M.F. (1984). Nonequilibrium phenomena II, From stochastics to hydrodynamics. In J.L. Lebowitz (Ed.),The wonderful world of random walks. Amsterdam: North-Holland, 1–121.Google Scholar
  9. Munson, P.J., Taylor, R.C., and Michaels G.S. (1992). DNA correlations.Nature, 360: 636.PubMedCrossRefGoogle Scholar
  10. Ossadnik, S.M., Buldyrev, S.V., Goldberger, A.L., Havlin, S., Mantegna, R.N., Peng, C.-K., Simons, M. and Stanley, H.E. (1994). Correlation approach to identify coding regions in DNA sequences.Biophysical Journal, 67: 64–70.PubMedCrossRefGoogle Scholar
  11. Peng, C.-K., Buldyrev, S.V., Goldberger, A.L., Havlin, S., Simons, M. and Stanley, H.E. (1992a). Long-range correlations in nucleotide sequences.Nature, 356: 168–170.PubMedCrossRefGoogle Scholar
  12. Peng, C.-K., Buldyrev, S.V., Goldberger, A.L., Havlin, S., Sciortino, F., Simons, M. and Stanley, H.E. (1992b). Fractal analysis of DNA walks.Physica A, 191: 25–29.PubMedCrossRefGoogle Scholar
  13. Peng, C.-K., Buldyrev, S.V., Goldberger, A.L., Havlin, S., Simons, M. and Stanley, H.E. (1993a). Finite size effects on long-range correlations: Implications for analyzing DNA sequences.Physical Review E, 47: 3730–3733.CrossRefGoogle Scholar
  14. Peng, C.-K., Mietus, J., Hausdorff, J.M., Havlin, S., Stanley, H.E. and Goldberger, A.L. (1993b). Long-range anti-correlations and non-Gaussian behavior of the heartbeat.Physical Review Letters, 70: 1343–1346.CrossRefGoogle Scholar
  15. Rigney, D.R., Mietus, J.E. and Goldberger, A.L. (1990). Is normal sinus rhythm “chaotic”? Measurement of lyapunov exponents.Circulation, 83 (Suppl III): 236.Google Scholar
  16. Rigney, D.R., Goldberger, A.L., Ocasio, W.C., Ichimaru, Y., Moody, G.B. and Mark, R.G. (1993). Description and analysis of multi-channel physiological data: Forecasting fluctuations in data set B of the 1991 Santa Fe Institute Time Series and Analysis Competition. In A. Weigen and N. Gershenfeld (Eds.),Predicting the future and understanding the past. Reading, MA: Addison-Wesley, 105–129.Google Scholar
  17. Skinner, J.E., Carpeggiani, C., Landisman, C.E. and Fulton, K.W. (1991). Correlation dimension of heartbeat intervals is reduced in conscious pigs by myocardial ischemia.Circulation Research, 68: 966–976.PubMedGoogle Scholar
  18. Stanley, H.E. (1971).Introduction to phase transitions and critical phenomena. Oxford and New York: Oxford University Press.Google Scholar
  19. Tavare, S., Giddings, B.W. (1989). Some statistical aspects of the primary structure of necleotide sequences. In M.S. Waterman (Ed.),Mathematical methods for DNA sequences. Boca Raton: CRC Press, 117–132.Google Scholar
  20. West, B.J., Bhargava, W. and Goldberger, A.L. (1986). Beyond similitude: Renormalization in the bronchial tree.Journal of Applied Physiology, 60: 1089–1097.PubMedGoogle Scholar
  21. West, B.J. and Goldberger, A.L. (1987). Physiology and fractal dimension.American Scientists, 75: 354.Google Scholar

Copyright information

© Springer 1994

Authors and Affiliations

  • Chung-Kang Peng
    • 1
    • 2
  • Sergey V. Buldyrev
    • 2
  • Jeffrey M. Hausdorff
    • 1
  • Shlomo Havlin
    • 2
    • 3
  • Joseph E. Mietus
    • 1
  • Michael Simons
    • 1
    • 4
  • H. Eugene Stanley
    • 2
  • Ary L. Goldberger
    • 1
  1. 1.Harvard Medical SchoolGZ-435 Beth Israel HospitalBoston
  2. 2.Center for Polymer StudiesBoston UniversityBoston
  3. 3.Bar-Ilan UniversityRamat-GanIsrael
  4. 4.MITCambridge

Personalised recommendations