, Volume 25, Issue 2, pp 149–164 | Cite as

Climate change impacts on U.S. Coastal and Marine Ecosystems

  • Donald Scavia
  • John C. Field
  • Donald F. Boesch
  • Robert W. Buddemeier
  • Virginia Burkett
  • Daniel R. Cayan
  • Michael Fogarty
  • Mark A. Harwell
  • Robert W. Howarth
  • Curt Mason
  • Denise J. Reed
  • Thomas C. Royer
  • Asbury H. Sallenger
  • James G. Titus


Increases in concentrations of greenhouse gases projected for the 21st century are expected to lead to increased mean global air and ocean temperatures. The National Assessment of Potential Consequences of Climate Variability and Change (NAST 2001) was based on a series of regional and sector assessments. This paper is a summary of the coastal and marine resources sector review of potential impacts on shorelines, estuaries, coastal wetlands, coral reefs, and ocean margin ecosystems. The assessment considered the impacts of several key drivers of climate change: sea level change; alterations in precipitation patterns and subsequent delivery of freshwater, nutrients, and sediment; increased ocean temperature; alterations in circulation patterns; changes in frequency and intensity of coastal storms; and increased levels of atmospheric CO2. Increasing rates of sea-level rise and intensity and frequency of coastal storms and hurricanes over the next decades will increase threats to shorelines, wetlands, and coastal development. Estuarine productivity will change in response to alteration in the timing and amount of freshwater, nutrients, and sediment delivery. Higher water temperatures and changes in freshwater delivery will alter estuarine stratification, residence time, and eutrophication. Increased ocean temperatures are expected to increase coral bleaching and higher CO2 levels may reduce coral calcification, making it more difficult for corals to recover from other disturbances, and inhibiting poleward shifts. Ocean warming is expected to cause poleward shifts in the ranges of many other organisms, including commercial species, and these shifts may have secondary effects on their predators and prey. Although these potential impacts of climate change and variability will vary from system to system, it is important to recognize that they will be superimposed upon, and in many cases intensify, other ecosystem stresses (pollution, harvesting, habitat destruction, invasive species, land and resource use, extreme natural events), which may lead to more significant consequences.


Coral Reef Coastal Wetland Sockeye Salmon Atlantic Hurricane National Marine Fishery Service 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Adams, D. A. 1963. Factors influencing vascular plant zonation in North Carolina salt marshes.Ecology 44:445–456.CrossRefGoogle Scholar
  2. Alexander, V. 1994. Arctic marine ecosystems, p. 221–232.In R. L. Peters and T. E. Lovejoy (eds.), Global Warming and Biological Diversity. Yale University Press, New Haven, Connecticut.Google Scholar
  3. Alpine, A. E. andJ. E. Cloern. 1992. Trophic interactions and direct physical effects control phytoplankton biomass and production in an estuary.Limnology and Oceanography 27:946–955.Google Scholar
  4. Anderson, P. J. andJ. F. Piatt. 1999. Community reorganization in the Gulf of Alaska following ocean climate regime shift.Marine Ecology Progress Series 89:117–123.CrossRefGoogle Scholar
  5. Aronson, R. B., W. F. Precht, andI. G. Macintyre. 1998. Extrinsic control of species replacement on a Holocene reef in Belize: The role of coral disease.Coral Reefs 17:223–230.CrossRefGoogle Scholar
  6. Bakun, A. 1990. Global climate change and intensification of coastal ocean upwelling.Science 247:198–201.CrossRefGoogle Scholar
  7. Ball, M. C., M. J. Cochrane, andH. M. Rawson. 1997. Growth and water use of the mangrovesRhizophora apiculata andR. stylosa in response to salinity and humidity under ambient and elevated concentrations of atmospheric CO2.Plant, Cell and Environment 20:1158–1166.CrossRefGoogle Scholar
  8. Barnett, T. P., D. W. Pierce, andR. Schnur. 2001. Detection of anthropogenic climate change in the world’s oceans.Science 282:270–274.CrossRefGoogle Scholar
  9. Bengtsson, L. 2001. Enhanced: Hurricane threats.Science 293: 440–441.CrossRefGoogle Scholar
  10. Boesch, D. F., J. C. Field, and D. Scavia (eds.). 2000. The potential consequences of climate variability and change on coastal areas and marine resources: Report of the coastal areas and marine resources sector team, U.S. National Assessment of the Potential Consequences of Climate Variability and Change. U.S. Global Change Research Program. National Oceanic and Atmospheric Administration Coastal Ocean Program Decision Analysis Series No. 21. Silver Spring, Maryland.Google Scholar
  11. Boesch, D. F., M. N. Josselyn, A. J. Mehta, J. T. Morris, W. K. Nuttle, C. A. Simenstad, andD. J. P. Swift. 1994. Scientific assessment of coastal wetland loss, restoration and management in Louisiana.Journal of Coastal Research 20:1–89.Google Scholar
  12. Brander, K. 1995. The effect of temperature on growth of Atlantic cod (Gadus morhua).ICES Journal of Marine Science 52: 1–10.CrossRefGoogle Scholar
  13. Bricker, S. B., C. G. Clement, D. E. Pirhall, S. P. Orlando, andD. R. G. Farrow. 1999. National estuarine eutrophication assessment: A summary of conditions, historical trends, and future outlook. National Oceanic and Atmospheric Administration. Silver Spring, Maryland.Google Scholar
  14. Brodeur, R. D. andD. M. Ware. 1992. Interannual and interdecadal changes in zooplankton biomass in the subarctic Pacific Ocean.Fisheries Oceanography 1:32–38.CrossRefGoogle Scholar
  15. Broecker, W. S., S. Sutherland, andT. H. Peng. 1999. A possible 20th century slowdown of Southern Ocean deep water formation.Science 286:1132–1135.CrossRefGoogle Scholar
  16. Buskey, E., B. Wysor, andC. Hyatt. 1998. The role of hypersalinity in the persistence of the Texas ‘brown tide’ in the Laguna Madre.Journal of Plankton Research 20:1553–1565.CrossRefGoogle Scholar
  17. Cahoon, D. R., D. J. Reed, R. W. Day, Jr.,G. D. Steyer, R. M. Boumanns, J. C. Lynch, D. McNally, andN. Latif. 1995. The influence of Hurricane Andrew on sediment distribution in Louisiana coastal marshes.Journal of Coastal Research 18:280–294.Google Scholar
  18. CENR. 2000. Integrated assessment of hypoxia in the northern Gulf of Mexico. National Science and Technology Council Committee on Environment and Natural Resources, Washington, D.C.Google Scholar
  19. Cloern, J. E. 1991. Tidal stirring and phytoplankton bloom dynamics in an estuary.Journal of Marine Research 49:203–221.CrossRefGoogle Scholar
  20. Cloern, J. E. 1996. Phytoplankton bloom dynamics in coastal ecosystems: A review with some general lessons from sustained investigation of San Francisco Bay, California.Reviews of Geophysics 34:127–168.CrossRefGoogle Scholar
  21. Cloern, J. E. 2001. Our evolving conceptual model of the coastal eutrophication problem.Marine Ecology Progress Series 210: 223–253.CrossRefGoogle Scholar
  22. Colton, Jr.J. B. 1972. Temperature trends and the distribution of groundfish in continental shelf waters, Nova Scotia to Cape-Hatteras as determined from research vessel survey data.Fisheries Bulletin 75:1–21.Google Scholar
  23. Connell, J. H. 1997. Disturbance and recovery of coral assemblages.Coral Reefs 16:S101-S113.CrossRefGoogle Scholar
  24. Costanza, R., R. d Arge, R. de Groot, S. Farber, M. Grasso, B. Hannon, K. Limburg, S. Naeem, R. V. O’Neill, J. Paruelo, R. G. Raskin, P. Sutton, andM. van den Belt. 1997. The value of the world’s ecosystem services and natural capital.Nature 387:253–260.CrossRefGoogle Scholar
  25. Cox, S. P. andS. G. Hinch. 1997. Changes in size at maturity of Fraser River sockeye salmon (Oncorhynchus nerka) (1952–1993) and associations with temperature.Canadian Journal of Fisheries and Aquatic Sciences 54:1159–1165.CrossRefGoogle Scholar
  26. Curtis, P. S., B. G. Drake, andD. F. Whigham. 1989. Nitrogen and carbon dynamics in C3 and C4 estuarine marsh plants grown under elevated CO2 in situ.Oecologia 78:297–301.CrossRefGoogle Scholar
  27. Dettinger, M. D. andD. R. Cayan. 1995. Large-scale atmospheric forcing of recent trends toward early snowmelt runoff in California.Journal of Climate 8:606–623.CrossRefGoogle Scholar
  28. Done, T. J. 1999. Coral community adaptability to environmental change at the scales of regions, reefs and reef zones.American Zoologist 39:66–79.Google Scholar
  29. Driscoll, N. W. andG. H. Haug. 1998. A short circuit in thermohaline circulation: A cause for Northern Hemisphere glaciation?Science 282:436–438.CrossRefGoogle Scholar
  30. Ellison, J. C. andD. R. Stoddart. 1991. Mangrove ecosystem collapse during predicted sea-level rise: Holocene analogues and implications.Journal of Coastal Research 7:151–165.Google Scholar
  31. Farnsworth, E. J., A. M. Ellison, andW. K. Gong. 1996. Elevated CO2 alters anatomy, physiology growth, and reproduction of red mangrove (Rhizophora mangle L.).Oecologia 108: 599–609.CrossRefGoogle Scholar
  32. Federal Emergency Management Agency (FEMA). 1991. Projected Impacts of Relative Sea-level Rise on the National Flood Insurance Program. Report to Congress. Federal Emergency Management Agency, Washington, D.C.Google Scholar
  33. Freeland, H. J., K. Denman, C. S. Wong, F. Whitney, andR. Jacques. 1997. Evidence of change in the winter mixed layer depth in the Northeast Pacific Ocean.Deep-Sea Research 44: 2117–2129.CrossRefGoogle Scholar
  34. Gattuso, J. P., D. Allemand, andM. Frankignoulle. 1999. Photosynthesis and calcification at cellular, organismal and community levels in coral reefs: A review on interactions and control by the carbonate chemistry.American Zoologist 39:160–183.Google Scholar
  35. Glynn, P. W. 1996. Coral reef bleaching: Facts, hypotheses and implications.Global Change Biology 2:495–509.CrossRefGoogle Scholar
  36. Glynn, P. W. andW. H. de Weerdt. 1991. Elimination of two reef-building hydrocorals following the 1982–1983 El Niõ warming event.Science 253:69–71.CrossRefGoogle Scholar
  37. Goldenberg, S. B., C. W. Landsea, A. M. Mestas-Nuñez, andW. M. Gray. 2001. The recent increase in Atlantic hurricane activity: Causes and implications.Science 293:474–479.CrossRefGoogle Scholar
  38. Good, J. W. 1994. Shore protection policy and practices in Oregon: An evaluation of implementation success.Coastal Management 22:335–352.Google Scholar
  39. Goodbred, Jr.,S. L., E. E. Wright, andA. C. Hine. 1998. Sealevel change and storm-surge deposition in a late holocene Florida salt marsh.Journal of Sedimentary Research 68:240–252.Google Scholar
  40. Goolsby, D. A., W. A. Battaglin, G. B. Lawrence, R. S. Artz, B. T. Aulenbach, and R. P. Hooper. 1999. Flux and sources of nutrient in the Mississippi-Atchafalaya River Basin. National Oceanic and Atmospheric Administration, Coastal Ocean Program Decision Analysis Series No. 17. Silver Spring, Maryland.Google Scholar
  41. Greenstein, B. J., H. A. Curran, andJ. M. Pandolfi. 1998. Shifting ecological baselines and the demise ofAcropora cervicornis in the western North Atlantic and Caribbean Province: A Pleistocene perspective.Coral Reefs 17:249–261.CrossRefGoogle Scholar
  42. Griggs, G. B. andK. M. Brown. 1998. Erosion and shoreline damage along the Central California coast: A comparison between the 1997–98 and 1982–83 ENSO winters.Shore and Beach 66:18–23.Google Scholar
  43. Gucinski, H., R. T. Lackey, andB. C. Spence. 1990. Global climate change: Policy implications for fisheries.Fisheries 15:33–38.CrossRefGoogle Scholar
  44. Guntenspergen, G. R., D. R. Cahoon, J. Grace, G. D. Steyer, S. Fournet, M. Townson, andA. L. Foote. 1995. Disturbance and recovery of the Louisiana coastal marsh landscape from the impacts of Hurricane Andrew.Journal of Coastal Research 21:324–339.Google Scholar
  45. Hallegraeffe, G. M. 1993. A review of harmful algal blooms and their apparent global increase.Phycologia 32:79–99.Google Scholar
  46. Hare, S. R., N. J. Mantua, andR. C. Francis. 1999. Inverse production regimes: Alaska and West Coast Pacific Salmon.Fisheries 24:6–14.CrossRefGoogle Scholar
  47. Harris, L. D. andW. P. Cropper, Jr. 1992. Between the devil and the deep blue sea: Implications of climate change for Florida’s fauna, p. 309–324.In R. L. Peters and T. E. Lovejoy (eds.), Global Warming and Biological Diversity. Yale University Press, New Haven, Connecticut.Google Scholar
  48. Harvell, C. D., K. Kim, J. M. Burkholder, R. R. Colwell, P. R. Epstein, D. J. Grimes, E. E. Hofmann, E. K. Lipp, A. D. M. E. Osterhaus, R. M. Overstreet, J. W. Porter, G. W. Smith, andG. R. Vasta. 1999. Emerging marine diseases: Climate links and anthropogenic factors.Science 285:1505–1510.CrossRefGoogle Scholar
  49. Heinz Center. 2000. The Hidden Costs of Coastal Hazards: Implications for Risk Assessment and Mitigation. Island Press, Washington, D.C.Google Scholar
  50. Hoegh-Guldberg, O. 1999. Climate change, coral bleaching and the future of the world’s coral reefs.Marine and Freshwater Research 50:839–866.CrossRefGoogle Scholar
  51. Holbrook, S. J., R. J. Schmitt, andJ. S. Stephens, Jr. 1997. Changes in an assemblage of temperate reef fishes associated with a climate shift.Ecological Applications 7:1299–1310.CrossRefGoogle Scholar
  52. Hotten, R. D. 1988. Sand mining on Mission Beach, San Diego, California.Shore and Beach 56:18–21.Google Scholar
  53. Howarth, R. W., G. Billen, D. Swaney, A. Townsend, N. Jaworski, K. Lajtha, J. A. Downing, R. Elmgren, N. Caraco, T. Jordan, F. Berendse, J. Freney, V. Kudeyarov, P. Murdoch, andZ. Zhao-Liang. 1996. Regional N budgets and riverine N & P fluxes for the drainages to the North Atlantic Ocean: Natural and human influences.Biogeochemistry 35:75–139.CrossRefGoogle Scholar
  54. Howarth, R. W., D. Swaney, T. J. Butler, andR. Marino. 2000. Climatic control on eutrophication of the Hudson River estuary.Ecosystems 3:210–215.CrossRefGoogle Scholar
  55. Hughes, T. P. 1994. Catastrophes, phase shifts, and large-scale degradation of a Caribbean coral reef.Science 265:1547–1551.CrossRefGoogle Scholar
  56. Hughes, T. P. andJ. H. Connell. 1999. Multiple stressors on coral reefs: A long-term perspective.Limnology and Oceanography 44:932–940.CrossRefGoogle Scholar
  57. Intergovernmental Panel on Climate Change (IPCC). 1996. Climate Change 1995: Impacts, Adaptations and Mitigation of Climate Change: Scientific-Technical Analysis. Cambridge University Press, New York.Google Scholar
  58. Intergovernmental Panel on Climate Change (IPCC). 2001. Climate Change 2001: The Scientific Basis Climate Change 1995. Cambridge University Press, New York.Google Scholar
  59. Jickelis, T. D. 1998. Nutrient biogeochemistry of the coastal zone.Science 281:217–222.CrossRefGoogle Scholar
  60. Jobling, M. 1996. Temperature and growth: Modulation of growth rate via temperature change, p. 225–253.In C. M. Wood and D. G. MacDonald (eds.), Global Warming: Implications for Marine and Freshwater Fish. Cambridge University Press, Cambridge, Maryland.Google Scholar
  61. Johannessen, O. M., E. V. Shalina, andM. W. Miles. 1999. Satellite evidence for an Arctic sea ice cover in transformation.Science 286:1937–1939.CrossRefGoogle Scholar
  62. Karl, T. R., R. W. Knight, D. R. Easterling, andR. G. Quayle. 1995. Indices of climate change for the United States.Bulletin of the American Meteorological Society 77:279–292.CrossRefGoogle Scholar
  63. Kennedy, V. S. 1990. Anticipated effects of climate change on estuarine and coastal fisheries.Fisheries 15:16–25.CrossRefGoogle Scholar
  64. Kerr, E. A. 1999. Thermodynamic control of hurricane intensity.Nature 401:665–669.CrossRefGoogle Scholar
  65. Kinsey, D. W. 1988. Coral reef system response to some natural and anthropogenic stresses.Galaxea 7:113–128.Google Scholar
  66. Kleypas, J. A., R. W. Buddemeier, D. Archer, J. P. Gattuso, C. Langdon, andB. N. Opdyke. 1999a. Geochemical consequences of increased atmospheric carbon dioxide on coral reefs.Science 284:118–120.CrossRefGoogle Scholar
  67. Kleypas, J. A., J. W. McManus, andL. A. B. Menez. 1999b. Environmental limits to coral reef development: Where do we draw the line?.American Zoologist 39:146–159.Google Scholar
  68. Knutson, T. R. andR. E. Tuleva. 1999. Increased hurricane intensities with CO2-induced warming as simulated using the GFDL hurricane prediction system.Climate Dynamics 15:503–519.CrossRefGoogle Scholar
  69. Knutson, T. R., R. E. Tuleya, andY. Kurihara. 1998. Simulated increase of hurricane intensities in a CO2 warmed climate.Science 279:1018–1020.CrossRefGoogle Scholar
  70. Kuhn, N. L., I. A. Mendelssohn, andD. J. Reed. 1999. Altered hydrology effects on Louisiana salt marsh function.Wetlands 19:1447–1452.Google Scholar
  71. Landsea, C. W., N. Nicholls, W. M. Gray, andL. A. Avila. 1996. Downward trends in the frequency of intense Atlantic hurricanes during the past five decades.Geophysical Research Letters 23:1697–1700.CrossRefGoogle Scholar
  72. Lapointe, B. E. 1999. Simultaneous top-down and bottom-up forces control microalgal blooms on coral reefs.Limnology and Oceanography 44:1586–1592.Google Scholar
  73. Levitus, S., J. I. Antonov, T. P. Boyer, andC. Stephans. 2000. Warming of the world ocean.Science 287:2225–2229.CrossRefGoogle Scholar
  74. Levitus, S., J. I. Antonov, J. Wang, T. L. Delworth, K. W. Dixon, andA. J. Broccoli. 2001. Anthropogenic warming of earth’s climate system.Science 292:267–270.CrossRefGoogle Scholar
  75. Malcolm, J. R. andA. Markham. 1997. Climate Change Threats to the National Parks and Protected Areas of the United States and Canada. World Wildlife Fund, Washington, D.C.Google Scholar
  76. Malone, T. C. 1977. Environmental regulation of phytoplankton productivity in the lower Hudson estuary.Estuarine and Coastal Marine Science 5:57–171.CrossRefGoogle Scholar
  77. Mantua, N. J., S. R. Hare, Y. Shang, J. M. Wallace, andR. C. Francis. 1997. A Pacific interdecadal climate oscillation with impacts on salmon production.Bulletin of the American Meteorological Society 78:1069–1079.CrossRefGoogle Scholar
  78. Marshall, C. T. andK. T. Frank. 1999. Implications of density-dependent juvenile growth for compensatory recruitment regulation of haddock.Canadian Journal of Fisheries and Aquatic Sciences 56:356–363.CrossRefGoogle Scholar
  79. McGowan, J. A., D. R. Cayan, andL. M. Dorman. 1998. Climate, ocean variability and ecosystem response in the Northeast Pacific.Science 281:210–217.CrossRefGoogle Scholar
  80. McKee, K. L. andI. A. Mendelssohn. 1989. Response of a freshwater marsh plant community to increased salinity and increased water level.Aquatic Botany 34:301–316.CrossRefGoogle Scholar
  81. McMilian, R. L. andC. L. Sherrod. 1986. The chilling tolerance of black mangrove,Avicennia germinans, from the Gulf of Mexico coast of Texas, Louisiana and Florida.Contributions in Marine Science 29:9–16.Google Scholar
  82. Meeuwig, J. J., J. B. Rasmussen, andR. H. Peters. 1998. Turbid waters and clarifying mussels: Their moderation of empirical chl∶nutrient relations in estuaries in Prince Edward Island, Canada.Marine Ecology Progress Series 171:139–150.Google Scholar
  83. Milliman, J. D. 1993. Coral reefs and their responses to global climate change. Climatic Change in the Intra-American Seas, p. 306–321.In G. A. Maul (ed.), United Nations Environment Programme and Intergovernmental Oceanographic Commission. Edward Arnold, London, UK.Google Scholar
  84. Moffat, A. S. 1998. Global nitrogen overload problem grows critical.Science 279:988–989.CrossRefGoogle Scholar
  85. Moore, M. V., M. L. Pace, J. R. Mather, P. S. Murdoch, R. W. Howarth, C. L. Folt, C. Y. Chen, H. F. Hemond, P. A. Flebbe, andC. T. Driscoll. 1997. Potential effects of climate change on freshwater ecosystems of the New England/mid-Atlantic region.Hydrological Processes 11:925–947.CrossRefGoogle Scholar
  86. Morton, R. A. 1979. Temporal and spatial variations in shoreline changes and their implications, examples from the Texas Gulf Coast.Journal of Sedimentary Petrology 49:1101–1112.Google Scholar
  87. Mrosovsky, N. andJ. Provancha. 1992. Sex ratio of hatchling loggerhead sea turtles: Data and estimates from a five-year study.Canadian Journal of Zoology 70:530–538.CrossRefGoogle Scholar
  88. Mrosovsky, N. andC. L. Yntema. 1980. Temperature dependence on sexual differentiation in sea turtles: Implications for conservation.Biological Conservation 18:271–280.CrossRefGoogle Scholar
  89. Murowski, S. A. 1993. Climate change and marine fish distributions: Forecasting from historical analogy.Transactions of the American Fisheries Society 122:657–658.Google Scholar
  90. Najjar, R. G., H. A. Walker, P. J. Anderson, E. J. Barro, R. J. Bord, J. R. Gibso, V. S. Kennedy, C. G. Knight, J. P. Megonigal, R. E. O’Connor, C. D. Polsky, N. P. Psuty, B. A. Richards, L. G. Sorenson, E. M. Steele, andR. S. Swanson. 2000. The potential impacts of climate change on the mid-Atlantic coastal region.Climate Research 14:219–233.CrossRefGoogle Scholar
  91. National Assessment Synthesis Team (NAST). 2001. Climate Change Impacts on the United States: The Potential Consequences of Climate Variability and Change. U.S. Global Change Research Program. Cambridge University Press, Cambridge, UK.Google Scholar
  92. National Marine Fisheries Service (NMFS). 2000. Fisheries of the United States, 1999. Current Fisheries Statistics No. 9900. Silver Spring, Maryland.Google Scholar
  93. National Research Council (NRC). 2000. Clean Coastal Waters: Understanding and Reducing the Effects of Nutrient Pollution. National Academy Press, Washington, D.C.Google Scholar
  94. Neumann, J. E., G. Yohe, R. Nicholis, andM. Maino. 2000. Sea-level rise and global climate change: A review of impacts to U.S. Coasts. Pew Center on Global Climate Change, Arlington, Virginia.Google Scholar
  95. Nicholis, R. J. andS. P. Leatherman. 1996. Adapting to sealevel rise: Relative sea-level trends to 2100 for the USA.Coastal Management 24:301–324.Google Scholar
  96. Niebauer, H. J. 1991. Physical oceanographic interactions at the edge of the Arctic ice pack.Journal of Marine Systems 2:209–232.CrossRefGoogle Scholar
  97. Peterson, D., D. Cayan, J. DiLeo, M. Noble, andM. Dettinger. 1995. The role of climate in estuarine variability.American Scientist 83:58–67.Google Scholar
  98. Pezeshki, S. R., R. D. DeLaune, andW. H. Patrick, Jr. 1987. Response of the freshwater marsh species,Panicum hemitomon Schult., to increased salinity.Freshwater Biology 17:195–200.CrossRefGoogle Scholar
  99. Pielke, Jr.,R. A. andC. W. Landsea. 1999. La Nina, El Niño, and Atlantic hurricane damages in the United States.Bulletin of the American Meteorological Society 80:2027–2033.CrossRefGoogle Scholar
  100. Pittock, A. B. 1999. Coral reefs and environmental change: Adaptation to what?American Zoologist 39:10–29.Google Scholar
  101. Polovina, J. J., G. T. Mitchum, andG. T. Evans. 1995. Decadal and basin scale-variation in mixed layer depth and the impact on biological production in the Central and North Pacific 1960–88.Deep Sea Research 42:1701–1716.CrossRefGoogle Scholar
  102. Pool, D. L., S. C. Snedaker, andA. E. Lugo. 1977. Structure of mangrove forests in Florida, Puerto Rico, Mexico, and Costa Rica.Biotropica 9:195–212.CrossRefGoogle Scholar
  103. Pugh, D. T. andG. A. Maul. 1999. Coastal sea-level prediction for climate change, p. 377–404.In C. N. K. Mooers (ed.), Coastal and Estuarine Studies 56. Coastal Ocean Prediction. American Geophysical Union, Washington, D.C.Google Scholar
  104. Rabalais, N. N., R. E. Turner, D. Justic, Q. Dortch, and W. J. Wiseman, Jr. 1999. Characterization of Hypoxia. National Oceanic and Atmospheric Administration, Coastal Ocean Program Decision Analysis Series No. 15. Silver Spring, Maryland.Google Scholar
  105. Rabalais, N. N., R. R. Turner, andD. Scavia. 2002. Beyond science into policy: Gulf of Mexico hypoxia and the Mississippi River.BioScience 52:129–142.CrossRefGoogle Scholar
  106. Reed, D. J. 1990. The impact of sea-level rise on coastal salt marshes.Progress in Physical Geology 14:24–40.Google Scholar
  107. Reed, D. J. 1995. The response of coastal marshes to sea-level rise: Survival or submergence.Earth Surface Processes and Landforms 20:39–48.CrossRefGoogle Scholar
  108. Reed, D. J. 1999. Response of mineral and organic components of coastal marsh accretion to global climate change.Current Topics in Wetland Biogeochemistry 3:90–99.Google Scholar
  109. Rice, J. 1995. Food web theory, marine food webs, and what climate change may do to northern marine fish populations.In R. J. Beamish (ed.), Climate Change and Northern Fish Populations.Canadian Special Publication of Fisheries and Aquatic Sciences 121:561–568.Google Scholar
  110. Roemmich, D. andJ. McGowan. 1995. Climatic warming and the decline of zooplankton in the California current.Science 267:1324–1326.CrossRefGoogle Scholar
  111. Rothrock, D. A., Y. Yu, andG. A. Maykut. 1999. Thinning of the Arctic Sea-ice cover.Geophysical Research Letters 26:3469–3472.CrossRefGoogle Scholar
  112. Royer, T. C., C. E. Grosch, andL. A. Mysak. 2001. Interdecadal variability of Northeast Pacific coastal freshwater and its implications on biological productivity.Progress in Oceanography 49:95–111.CrossRefGoogle Scholar
  113. Rozema, J., F. Dorel, R. Janissen, G. M. Lessen, R. A. Broekman, W. J. Arp, andB. G. Drake. 1991. Effect of elevated atmospheric CO2 on growth, photosynthesis and water relations of salt marsh grass species.Aquatic Botany 39:45.CrossRefGoogle Scholar
  114. Rozema, J., G. M. Lenssen, R. A. Broekman, andW. P. Arp. 1990. Effects of atmospheric carbon dioxide enrichment on salt-marsh plants, p. 49–54.In J. J. Beukema (ed.), Expected Effects of Climatic Change on Marine Coastal Ecosystems. Kluwer Academic Publishers, Amsterdam, The Netherlands.Google Scholar
  115. Sagarin, R. D., J. P. Barry, S. E. Gilman, andC. H. Baxter. 1999. Climate-related change in an intertidal community over short and long time scales.Ecological Monographs 69:465–490.CrossRefGoogle Scholar
  116. Scheibling, R. E. andR. L. Stephenson. 1984. Mass mortality ofStrongylocentrotus droebachiensis (Echinodermata: Echinoidea) off Nova Scotia, Canada.Marine Biology 78:153–164.CrossRefGoogle Scholar
  117. Smith, S. V. andR. W. Buddemeier. 1992. Global change and coral reef ecosystems.Annual Reviews of Ecology and Systematics 23:89–118.CrossRefGoogle Scholar
  118. Snedaker, S. C. 1995. Mangroves and climate change in the Florida and Caribbean region: Scenarios and hypotheses.Hydrobiologia 295:43–49.CrossRefGoogle Scholar
  119. Stirling, I. 1997. The importance of polynyas, ice edges, and leads to marine mammals and birds.Journal of Marine Systems 10:9–21.CrossRefGoogle Scholar
  120. Strong, A. E., E. J. Kearns, andK. K. Gjorvig. 2000. Sea surface temperature signals from satellites: An update.Geophysical Research Letters 27:1667–1670.CrossRefGoogle Scholar
  121. Timmermann, A., J. Oberhuber, A. Bacher, M. Esch, M. Latif, andE. Roeckner. 1999. Increased El Niño frequency in a climate model forced by future greenhouse warming.Nature 398:694–696.CrossRefGoogle Scholar
  122. Titus, J. G. andV. K. Narayanan. 1996. The risk of sea-level rise.Climatic Change 33:151–212.CrossRefGoogle Scholar
  123. Titus, J. G., R. A. Park, S. P. Leatherman, J. R. Weggel, M. S. Green, P. W. Mausel, S. Brown, C. Gaunt, M. Trehand, andG. Yohe. 1991. Greenhouse effect and sea-level rise: Potential loss of land and the cost of holding back the sea.Coastal Management 19:171–204.CrossRefGoogle Scholar
  124. Titus, J. G. andC. Richman. 2001. Maps of lands vulnerable to sea level rise: Modeled elevations along the U.S. Atlantic and Gulf coasts.Climatic Research 18:205–228.CrossRefGoogle Scholar
  125. Tynan, C. T. andD. P. DeMaster. 1997. Observations and predictions of Arctic climatic change: Potential effects on marine mammals.Arctic 50:308–322.Google Scholar
  126. Vinnikov, K. Y., A. Robock, R. J. Stouffer, J. E. Walsh, C. L. Parkinson, D. J. Cavalieri, J. F. B. Mitchell, D. Garrett, andV. F. Zakharov. 1999. Global warming and Northern Hemisphere sea ice extent.Science 286:1934–1937.CrossRefGoogle Scholar
  127. Vitousek, P. M., J. Aber, S. E. Bayley, R. W. Howarth, G. E. Likens, P. A. Matson, D. W. Shindler, W. H. Schlesinger, andG. D. Tilman. 1997. Human alteration of the global nitrogen cycle: Sources and consequences.Ecological Applications 7:737–750.Google Scholar
  128. Webb, J. W. 1983. Soil water salinity variations and their effects onSpartina alterniflora.Contributions to Marine Science 26:1–13.Google Scholar
  129. Welch, D. W., Y. Ishida, andK. Nagasawa. 1998. Thermal limits and ocean migrations of sockeye salmon (Oncorhynchus nerka): Long-term consequences of global warming.Canadian Journal of Fisheries and Aquatic Sciences 55:937–948.CrossRefGoogle Scholar
  130. Weller, G. A. andP. A. Anderson (eds.) 1998. Implications of Global Change in Alaska and the Bering Sea Region. Proceedings of a Worskhop, June 1997. Center for Global Change and Arctic System Research, University of Alaska Fairbanks, Fairbanks, Alaska.Google Scholar
  131. Wheeler, P. A., M. Gosselin, E. Sherr, D. Thibault, D. L. Kirchmans, R. Benner, andT. E. Whitledge. 1996. Active cycling of organic carbon in the Central Arctic Ocean.Nature 380:697–699.CrossRefGoogle Scholar
  132. Wigley, T. M. L. 1999. The Science of Climate Change: Global and U.S. Perspectives. Pew Center on Global Climate Change, Arlington, Virginia.Google Scholar
  133. Wilkinson, C. R. andR. W. Buddemeier. 1994. Global Climate Change and Coral Reefs: Implications for People and Reefs. Report of the UNEP-IOC-ASPEI-IUCN Global Task Team on the Implications of Climate Change on Coral Reefs. International Union for Conservation of Nature and Natural Resources. Gland, Switzerland.Google Scholar
  134. Wilkinson, C., O. Linden, H. Cesar, G. Hodgson, J. Rubens, andA. E. Strong. 1999. Ecological and socioeconomic impacts of 1998 coral mortality in the Indian Ocean: An ENSO impact and a warning of future change?Ambio 28:188–196.Google Scholar
  135. Williams, Jr.,E. H., C. Goenaga, andV. Vincente. 1987. Mass bleachings on Atlantic coral reefs.Science 238:877–888.CrossRefGoogle Scholar
  136. Wolock, D. M. andG. J. McCabe. 1999. Simulated effects of climate change on mean annual runoff in the conterminous United States.Journal of the American Water Resources Association 35:1341–1350.CrossRefGoogle Scholar
  137. Woodroffe, C. D. 1992. Mangrove sediments and geomorphology. Tropical mangrove ecosystems, p. 7–41.In A. I. Robertson and D. M. Alongi (eds.), Coastal and Estuarine Studies. 41. American Geophysical Union, Washington, D.C.Google Scholar
  138. Yohe, G. 1989. The cost of not holding back the sea.Journal of Ocean and Shoreline Management 15:233–255.CrossRefGoogle Scholar
  139. Yohe, G., J. Neumann, P. Marshall, andH. Ameden. 1996. The economic cost of greenhouse induced sea-level rise for developed property in the United States.Climatic Change 32:387–410.CrossRefGoogle Scholar
  140. Zervas, C. E. 2001. Sea level variations of the United States: 1854–1999. National Ocean Service, National Oceanic and Atmospheric Administration Technical Report NOS CO-OPS 36. Silver Spring, Maryland.Google Scholar
  141. Zhang, K., B. C. Douglas, andS. P. Leatherman. 1997. East coast storm surges provide unique climate record: EOS.Transactions of the American Geophysical Union 78:396–397.Google Scholar

Sources of Unpublished Materials

  1. Culliton, T. J. 1998. Population: distribution, density and growth. National Oceanic and Atmospheric Administration State of the Coast Report. Silver Spring, Maryland. Available: Scholar
  2. Miller, S. L. and M. P. Crosby. 1998. The Extent and Condition of U.S. Coral Reefs. National Oceanic and Atmospheric Administration State of the Coast Report. http://state-of-coast. Scholar
  3. National Climatic Data Center. 2001. http://lwf.ncdc.noaa. gov/oa/reports/billionz.html#LISTGoogle Scholar

Copyright information

© Estuarine Research Federation 2002

Authors and Affiliations

  • Donald Scavia
    • 1
  • John C. Field
    • 2
  • Donald F. Boesch
    • 3
  • Robert W. Buddemeier
    • 4
  • Virginia Burkett
    • 5
  • Daniel R. Cayan
    • 6
  • Michael Fogarty
    • 7
  • Mark A. Harwell
    • 8
  • Robert W. Howarth
    • 9
  • Curt Mason
    • 10
  • Denise J. Reed
    • 11
  • Thomas C. Royer
    • 12
  • Asbury H. Sallenger
    • 13
  • James G. Titus
    • 14
  1. 1.National Ocean ServiceNational Oceanic and Atmospheric AdministrationSilver Spring
  2. 2.College of Ocean and Fisheries ScienceUniversity of WashingtonSeattle
  3. 3.University of Maryland Center for Environmental ScienceCambridge
  4. 4.Kansas Geological SurveyUniversity of KansasLawrence
  5. 5.National Wetlands Research CenterU.S. Geological SurveyLafayette
  6. 6.Scripps Institute of OceanographyUniversity of California, San DiegoLa Jolla
  7. 7.National Marine Fisheries ServiceNational Oceanic and Atmospheric AdministrationWoods Hole
  8. 8.Rosentiel School of Marine and Atmospheric ScienceUniversity of MiamiMiami
  9. 9.Ecology and Evolutionary BiologyCornell UniversityIthica
  10. 10.Charles Town
  11. 11.Department of Geology and GeophysicsUniversity of New OrleansNew Orleans
  12. 12.Center for Coastal Physical Oceanography, Department of OceanEarth and Atmospheric Sciences, Old Dominion UniversityNorfolk
  13. 13.Center for Coastal GeologyU.S. Geological SurveySt. Petersburg
  14. 14.Office of Economy and the Environment, Global Programs Division (6205J)Environmental Protection AgencyWashington, DC

Personalised recommendations