Chromatographia

, Volume 41, Issue 5–6, pp 532–538 | Cite as

Retention behaviour of metal complexes with 5-sulphoquinoline-8-ol in reversed-phase ion-pair liquid chromatography

  • Y. Q. Feng
  • M. Shibukawa
  • K. Oguma
Originals

Summary

The reversed-phase ion-pair liquid chromatographic behaviour of several metal complexes with 5-sulphoquinoline-8-ol (HQS) on an octadecyl-modified silica column was investigated by using a fluorescence detector. The aluminum complex gave two peaks on the chromatograms when eluents containing phosphate buffer were used. The effects of the pH of the eluent, HQS concentration, the nature of anions in the eluent, and the column temperature on the retention behaviour of the aluminum complex are discussed on the basis of the equilibria and the kinetics of the complexation of the aluminum ion with HQS and anions in the eluent. The equilibrium constant for the interconversion reaction between the two Al(III)-HQS species which correspond to the two peaks observed and the second stepwise formation constant for the Zn(II)-HQS complex were evaluated from the HPLC data obtained.

Key Words

Column liquid chromatography Ion-pair LC 5-Sulphoquinoline-8-ol Metal complexes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    K. Robards, P. Starr, E. Patsalides, Analyst116, 1247 (1991).CrossRefGoogle Scholar
  2. [2]
    B. Steinbrech, J. Liq. Chromatogr.10, 1 (1987).CrossRefGoogle Scholar
  3. [3]
    B. R. Willeford, H. Veening, J. Chromatogr.251, 61 (1982).CrossRefGoogle Scholar
  4. [4]
    R. M. Smith, A. E. Martell, in “Critical Stability Constants”, Vol. 2, Plenum, New York, 1975, p. 227.CrossRefGoogle Scholar
  5. [5]
    A. E. Martell, R. M. Smith, in “Critical Stability Constants”, Vol. 5, Supplement, No. 1, Plenum, New York, 1982, p. 245.CrossRefGoogle Scholar
  6. [6]
    Y. Shijo, A. Saitoh, K. Suzuki, Chem. Lett. 181 (1989).Google Scholar
  7. [7]
    D. A. Phillips, K. Soroka, R. Vithanage, P. K. Dasgupta, Mikrochim. Acta, Part I, 207 (1986).Google Scholar
  8. [8]
    K. Soroka, R. S. Vithanage, D. A. Philips, B. Walker, P. K. Dasgupta, Anal. Chem.58, 629 (1987).CrossRefGoogle Scholar
  9. [9]
    H. Wada, T. Hakamata, K. Yasui, A. Yuchi, G. Nakagawa, Chem. Lett. 1571 (1991).Google Scholar
  10. [10]
    D. H. Henderson, S. J. Saltzman, P. C. Uden, Z. Cheng, Polyhedron7, 369 (1988).CrossRefGoogle Scholar
  11. [11]
    M. Saitoh, K. Furuya, H. Inoue, T. Shirai, Bunseki Kagaku41, 331 (1992).CrossRefGoogle Scholar
  12. [12]
    S. Lacroix, Anal. Chim. Acta1, 260 (1947).CrossRefGoogle Scholar
  13. [13]
    M. Shibukawa, K. Oguma, R. Kuroda, J. High Resolut. Chromatogr.2, 229 (1979).CrossRefGoogle Scholar
  14. [14]
    M. Shibukawa, K. Oguma, R. Kuroda, Fresenius’ Z. Anal. Chem.319, 410 (1984).CrossRefGoogle Scholar
  15. [15]
    J. H. Knox, M. Shibukawa, J. Chromatogr.545, 123 (1991).CrossRefGoogle Scholar
  16. [16]
    J. A. Bishop, Anal. Chim. Acta63, 305 (1973).CrossRefGoogle Scholar

Copyright information

© Friedr. Vieweg & Sohn Verlagsgesellschaft mbH 1995

Authors and Affiliations

  • Y. Q. Feng
    • 1
  • M. Shibukawa
    • 1
  • K. Oguma
    • 1
  1. 1.Laboratory for Analytical Chemistry, Faculty of EngineeringChiba UniversityChibaJapan

Personalised recommendations