Advertisement

Journal of Molecular Neuroscience

, Volume 31, Issue 1, pp 69–82 | Cite as

Preprothyrotropin-releasing hormone178–199 affects tyrosine hydroxylase biosynthesis in hypothalamic neurons

A possible role for pituitary prolactin regulation
  • Jorge Goldstein
  • Mario Perello
  • Eduardo A. NillniEmail author
Original Article

Abstract

ProThyrotropin-releasing hormone (proTRH) is a prohormone widely distributed in many areas of the brain. After biosynthesis, proTRH is subjected to post-translational processing to generate TRH and seven non-TRH peptides. Among these non-TRH sequences, we found previously that preproTRH178–199 could regulate the secretion of prolactin in suckled rats by their pups. Dopamine (DA), the main regulator of prolactin secretion, is produced in dopaminergic tyrosine hydroxylase (TH)-positive neurons in the hypothalamic arcuate nucleus (ARC). In this study we investigated whether prolactin release during the estrous sexual cycle is regulated by prepro TRH178–199 through its effecton DA neurons of the ARC. We observed that biotinylated prepro TRH178–199 bound to neurons in the ARC; this was higher during proestrus than during diestrus. Binding of preproTRH178–199 to DA neurons was seen only during proestrus in the ARC. Using primary neuronal hypothalamic cultures we found that preproTRH178–199peptide decreased TH levels in a dose-responsive manner, whereas intra-ARC administration of preproTRH178–199 induced a 20-fold increase in plasma prolactin levels. Together, these results suggest a potential role for preproTRH178–199 in regulating dopaminergic neurons involved in the inhibition of pituitary prolactin release.

Index Entries

ProTRH pepetides prolactin dopamine neurons arcuate nucleus 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Armstrong W.E. and Hatton G. I. (1980) The localization of projection neurons in the rat hypothalamic paraventricular necleus following vascular and neurophypophysial injections of HRP. Brain Res. Bull. 5, 473–477.PubMedCrossRefGoogle Scholar
  2. Cintra A., Fuxe K., Wikstrom A. C., Visser T., and Gustafsson J. A. (1990) Evidence for thyrotropin-releasing hormone and glucocorticoid receptor-immunoreactive neurons in various preoptic and hypothalamic nuclei of the male rat. Brain Res. 506, 139–144.PubMedCrossRefGoogle Scholar
  3. Conrad L. C., and Pfaff D. W. (1976) Efferents from medial basal forebrain and hypothalamus in the rat. II. An autoradiographic study of the anterior hypothalamus. J. Comp. Neurol. 169, 221–261.PubMedCrossRefGoogle Scholar
  4. Dahlstrom A., and Fuxe K. (1964) Localization of monoamines in the lower brain stem. Experientia 20, 398–399.PubMedCrossRefGoogle Scholar
  5. DeMaria J. E., Livingstone J. D., and Freeman M. E. (1998) Characterization of the dopaminergic input to the pituitary gland throughout the estrous cycle of the rat. Neuroendocrinology 67, 377–383.PubMedCrossRefGoogle Scholar
  6. Diaz M. L., Becerra M., Manso M. J., and Anadon R. (2002) Distribution of thyrotropin-releasing hormone (TRH) immunoreactivity in the brain of the zebrafish (Danio rerio). J. Comp. Neurol. 450, 45–60.PubMedCrossRefGoogle Scholar
  7. Fliers E., Noppen, N. W., Wiersinga W. M., Visser T. J., and Swaab D. F. (1994) Distribution of thyrotropin-releasing hormone (TRH)containing cells and fibers in the human hypothalamus. J. Comp. Neurol. 350, 311–323.PubMedCrossRefGoogle Scholar
  8. Freeman M. E., Kanyicska B., Lerant A., and Nagy G. (2000) Prolactin: structure, function, and regulation of secretion. Physiol. Rev. 80, 1523–1631.PubMedGoogle Scholar
  9. Goudreau J. L., Falls W. M., Lookingland K. J., and Moore K. E. (1995) Periventricular-hypophysial dopaminergic neurons innervate the intermediate but not the neural lobe of the rat pituitary gland. Neuroendocrinology 62, 147–154.PubMedGoogle Scholar
  10. Gruber K., McRae-Degueurce A., Wilkin L. D., Mitchell L. D. and Johnson A. K. (1987) Forebrain and brainstem afferents to the arcuate nucleus in the rat: potential pathways for the modulation of hypophyseal secretions. Neurosci. Lett. 75, 1–5.PubMedCrossRefGoogle Scholar
  11. Gu G. B. and Simerly R. B. (1997) Projections of the sexually dimorphic anteroventral periventricular nucleus in the female rat. J. Comp. Neurol. 384, 142–164.PubMedCrossRefGoogle Scholar
  12. Guldenaar S. E., Veldkamp B., Bakker O., Wiersinga W. M., Swaab D. F., and Fliers E. (1996) Thyrotropin-releasing hormone gene expression in the humanhypothalamus. Brain Res. 743, 93–101.PubMedCrossRefGoogle Scholar
  13. Horvath T. L. (1997) Suprachiasmatic efferents avoid phenestrated capillaries but innervate neuroendocrine cells, including those producing dopamine. Endocrinology 138, 1312–1320.PubMedCrossRefGoogle Scholar
  14. Ishikawa K., Taniguchi Y., Kurosumi K., and Suzuki M. (1986) Origin of septal thyrotropin-releasing hormone in the rat. Neuroendocrinology 44, 54–58.PubMedGoogle Scholar
  15. Landram A., Bulant M., Montagne J. J., and Nicolas P. (1994) Distribution of TRH-potentiating peptide (PS4) and its receptors in rat brain and peripheral tissues. Biochem. Biophys. Res. Commun. 200, 958–965.CrossRefGoogle Scholar
  16. Lechan R. M. and Jackson I. M. D. (1982) Immuno-histochemical localization of thyrotropin-releasing hormone in the rat hypothalamus and pituitary. Endocrinology 111, 55.PubMedGoogle Scholar
  17. Lechan R. M., Wu P., and Jackson I. M. D. (1987) Immuno-cytochemical distribution in rat brain of putative peptides derived from thyrotropin-releasing hormone prohormone. Endocrinology 121, 1879–1891.PubMedGoogle Scholar
  18. Li C., Chen, P., and Smith M. S. (1999) Identification of neuronal input to the arcuate nucleus (ARH) activated during lactation: implications in the activation of neuropeptide Y neurons. Brain Res. 824, 267–276.PubMedCrossRefGoogle Scholar
  19. Merchenthaler I., Csemus V., Csontos C., Petrusz P., and Mess B. (1988) New data on the immunocytochemical localization of thyrotropin-releasing hormone in the rat central nervous system. Am. J. Anat. 181, 359–376.PubMedCrossRefGoogle Scholar
  20. Mohankumar P. S., Thyagariajan S., and Quadri S. K. (1994) Correlations of catecholamine release in the medial preoptic area with proestrous surges of luteinizing hormone and prolactin: effects of aging. Endocrinology 135, 119–126.PubMedCrossRefGoogle Scholar
  21. Mohankumar P. S., Thyagarajan S., and Quadri S. K. (1995) Cyclic and age-related changes in norepinephrine concentrations in the medial preoptic area and arcuate nucleus. Brain Res. Bull. 38, 561–564.PubMedCrossRefGoogle Scholar
  22. Mohankumar P. S., Thyagarajan S., and Quadri S. K. (1997) Tyrosine hydroxylase and DOPA decarboxylase activities in the medical preoptic area and arcuate nucleus during the estrous cycle: effects of aging. Brain Res. Bull. 42, 265–271.PubMedCrossRefGoogle Scholar
  23. Morley J. E. (1979) Extrahypothalamic thyrotropin-releasing hormone (TRH)—its distribution and its functions. Life Sci. 25, 1539–1550.PubMedCrossRefGoogle Scholar
  24. Nillni E. A., Aird F., Seidah N. G., Todd R. B., and Koenig J. I. (2001) Prepro TRH(178–199) and two novelpeptides (pFQ7 and pSE14) derived from its processing, which are produced in the paraventricular nucleus of the rat hypothalamus, are regulated during suckling. Endocrinology 142, 896–906.PubMedCrossRefGoogle Scholar
  25. Nillni E. A. and Sevarino K. A. (1999) The biology of pro-thyrotropin-releasing hormone-derived peptides. Endocrinol. Rev. 20, 599–648.CrossRefGoogle Scholar
  26. Nillni E. A., Lee A., Legradi G., and Lechan R. M. (2002) Effect of precipitated morphine withdrawal on post-translational processing of prothyrotropin releasing hormone (proTRH) in the ventrolateral column of the midbrain periaqueductal gray. J. Neurochem. 80, 874–884.PubMedCrossRefGoogle Scholar
  27. Nillni E. A., Luo L. G., Jackson I. M., and McMillan P. (1996) Identification of the thyrotropin-releasing hormone precursor, its processing products, and its coexpression with convertase 1 in primary cultures of hypothalamic neurons: anatomic distribution of PC1 and PC2. Endocrinology 137 5651–5661.PubMedCrossRefGoogle Scholar
  28. Parker C. R. Jr. and Porter J. C. (1983) Regional localization and subcellular compartmentalization of thyrotropin-releasing hormone in adult human brain. J. Neurochem. 41, 1614–1622.PubMedCrossRefGoogle Scholar
  29. Pasqualini C., Bojda F., Gaudoux F., Guilbert B., Leviel V., Teissier E., et al. (1988) Changes in tuberoin-fundibular dopaminergic neuron activity during the rat estrous cycle in relation to the prolactin surge: alteration by a mammary carcinogen. Neuroendocrinology 48, 320–327.PubMedGoogle Scholar
  30. Paull W. K. and Gibbs F. P. (1983) The corticotropin releasing factor (CRF) neuronsecretory system in intact, adrenalectomized, and adrenalectomized-dexamethasone treated rats. An immunocytochemical analysis. Histochemistry 78, 303–316.PubMedCrossRefGoogle Scholar
  31. Porter J. C. (1986) Relationship of age, sex, and reproductive status to the quantity of tyrosine hydroxylase in the median eminence and superior cervical ganglion of the rat. Endocrinology 118, 1426–1432.PubMedGoogle Scholar
  32. Roussel J.-P., Hollande F., Bulant, M., and Astier H. (1991) Aprepro-TRH connecting peptide (prepro-TRH160–169) potentiates TRH-induced TSH release from rat perfused pituitaries by stimmulating dihydropyridine- and omega-conotoxin-sensitive Ca2+ channels. Neuroendocrinology 54, 559–565.PubMedGoogle Scholar
  33. Sanchez E., Uribe R. M., Corkidi G., Zoeller R. T., Cisneros M., Zacarias M., et al. (2001) Differnetial responses of thyrotropin-releasing hormone (TRH) neurons to cold exposure or suckling indicate functional heterogeneity of the TRH system in the paraventricular nucleus of the rat hypothalamus. Neuroendocrinology 74, 407–422.PubMedCrossRefGoogle Scholar
  34. Simerly R. B. and Swanson L. W. (1987) The distribution of neurotransmitter-specific cells and fibers in the anteroventral periventricular nucleus: implications for the control of gonadotropin secretion in the rat. Brain Res. 400, 11–34.PubMedCrossRefGoogle Scholar
  35. Smith M. S., Freeman M. E., and Neill j. D. (1975) The control of progesterone secretion during the estrous cycle and early pseudopregnancy in the rat: prolactin, gonadotropin and steroid levels associated with rescue of the corpus luteum of pseudopregnancy. Endocrinology 96, 219–226.PubMedCrossRefGoogle Scholar
  36. Spratt D. P. and Herbison A. E. (2002) Projections of the sexually dimorphic calcitonin gene-related peptide neurons of the preoptic area determined by retrograde tracing in the female rat. J. Comp. Neurol. 445, 336–346.PubMedCrossRefGoogle Scholar
  37. Swanson L. W. and Hartman B. K. (1975) The central adrenergic system. An immunofluorescence study of the location of cell bodies and their efferent connections in the rat utilizing dopamine-beta-hydroxylase as a marker. J. Comp. Neurol. 163, 467–505.PubMedCrossRefGoogle Scholar
  38. ThyagaRajan S., MohanKumar P.S., and Quadri S.K. (1995) Cyclic changes in the release of norepinephrine and dopamine in the medial basal hypothalamus: effects of aging. Brain Res. 689, 122–128.PubMedCrossRefGoogle Scholar
  39. Toth Z. E. and Palkovits M. (1998) Distributions of periventricular projections of the paraventricular nucleus to the median eminence and arcuate nucleus. Brain Res. 802, 294–297.PubMedCrossRefGoogle Scholar
  40. Uribe R. M., Joseph-Bravo P., and Charli J. L. (1995) Pups removal enhances thyrotropin-releasing hormone mRNA in the hypothalamic paraventricular nucleus. Eur. J. Endocrinol. 133, 354–360.PubMedCrossRefGoogle Scholar
  41. Uribe R. M., Redondo J. L., Charli J. L., and Joseph-Bravo P. (1993) Suckling and cold stress rapidly and transiently increase TRH mRNA in the paraventricular nucleus. Neuroendocrinology 58, 140–145.PubMedGoogle Scholar
  42. Van den Bergh P., Wu P., Jackson I. M. and Lechan R. M. (1988) Neurons containing a N-terminal sequence of the TRH-prohormone (prepro TRH53-74) are present in a unique location of the midbrain periaqueductal gray of the rat. Brain Res. 461, 53–63.PubMedCrossRefGoogle Scholar
  43. Yamada M., Monden T., Satoh T., Iizuka M., Murakami M., Iruiuchijima T., and Mori M. (1992) Differnetial regulation of thyrotropin-releasing hormone receptor mRNA levels by thyroid hormone in vivo and in vitro (GH3 cells). Biochem. Biophys. Res. Commun. 184, 367–372.PubMedCrossRefGoogle Scholar
  44. Yarbrough G. G. (1979) On the neuropharmacology of thyrotropin-releasing hormone (TRH). Prog. Neurobiol. 12, 291–312.PubMedCrossRefGoogle Scholar
  45. Zoli M., Agnati L. F., Tinner B., Steinbusch H. W., and Fuxe K. (1993) Distribution of dopamine-immunoreactive neurons and their relationships to transmitter and hypothalamic hormone-immunoreactive neuronal systems in the rat mediobasal hypothalamus. A morphometric and microdensitometric analysis. J. Chem. Neuroanat. 6, 293–310.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc 2007

Authors and Affiliations

  • Jorge Goldstein
    • 1
  • Mario Perello
    • 1
  • Eduardo A. Nillni
    • 1
    • 2
    Email author
  1. 1.Division of Endocrinology, Department of Medicine, Brown Medical SchoolRhode Island HospitalProvidence
  2. 2.Department of Molecular Biology, Cell Biology and BiochemistryBrown UniversityProvidence

Personalised recommendations