Advertisement

Journal of Molecular Neuroscience

, Volume 31, Issue 1, pp 47–58 | Cite as

Distribution of histone deacetylases 1–11 in the rat brain

  • Ron S. Broide
  • Jeff M. Redwine
  • Najla Aftahi
  • Warren Young
  • Floyd E. Bloom
  • Christopher. J. WinrowEmail author
Original Article

Abstract

Although protein phosphorylation has been characterized more extensively, modulation of the acetylation state of signaling molecules is now being recognized as a key means of signal transduction. The enzymes responsible for mediating these changes include histone acetyl transferases and histone deacetylases (HDACs). Members of the HDAC family of enzymes have been identified as potential therapeutic targets for diseases ranging from cancer to ischemia and neurode generation. We initiated a project to conduct comprehensive gene expression mapping of the 11 HDAC isoforms (HDAC1-11) (classes I, II, and IV) throughout the rat brain using high-resolution in situ hybridization (ISH) and imaging technology. Internal and external data bases were employed to identify the appropriate rat sequence information for probe selection. In addition, immunohistochemistry was performed on these samples to separately examine HDAC expression in neurons, astrocytes, oligodendrocytes, and endothelial cells in the CNS. This double-labeling approach enabled the identification of specific cell types in which the individual HDACs were expressed. The signals obtained by ISH were compared to radiolabeled standards and thereby enabled semiquantitative analysis of individual HDAC isoforms and defined relative levels of gene expression in >50 brain regions. This project produced an extensive atlas of 11 HDAC isoforms throughout the rat brain, including cell type localization, providing a valuable resource for examining the roles of specific HDACs in the brain and the development of future modulators of HDAC activity.

Index Entries

Histone deacetylase gene expression brain transcription 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Acharya M. R., Sparreboom, A., Venitz J., and Figg W. D. (2005) Rational development of histone deacetylase inhibitors as anticancer agents: a review. Mol. Pharmacol. 68, 917–932.PubMedCrossRefGoogle Scholar
  2. Ajamian F., Suuronen T., Salminen A., and Reeben M. (2003) Upregulation of class II histone deacetylases mRNA during neural differentiation of cultured rat hippocampal progenitor cells. neurosci. Lett. 346, 57–60.PubMedCrossRefGoogle Scholar
  3. Alarcon J. M., Malleret G., Touzani K., et al. (2004) Chromatin acetylation memory, and LTP are impaired in CBP+/−mice: a model for the cognitive deficit in Rubinstein-Taybi syndrome and its amelioration. Neuron 42, 947–959.PubMedCrossRefGoogle Scholar
  4. Araki T., Sasaki Y., and Milbrandt J. (2004) Increased nuclear NAD biosynthesis and SIRT1 activation prevent axonal degeneration. Science 305, 1010–1013.PubMedCrossRefGoogle Scholar
  5. Bereshchenko O. R., Gu W., and Dalla-Favera R. (2002) Acetylation inactivates the transcriptional repressor BCL6. Nat. Genet. 32, 606–613.PubMedCrossRefGoogle Scholar
  6. Bolger T. A. and Yao T. P. (2005) Intracellular trafficking of histone deacetylase 4 regulates neuronal cell death. J. Neurosci. 25, 9544–9553.PubMedCrossRefGoogle Scholar
  7. Bradbury C. A., Khanim G. L., Hayden R., et al. (2005). Histone deacetylase in acute myeloid leukaemia show a distinctive pattern of expression that changes selectively in response to deacetylase inhibitors. Leukemia 19, 1751–1759.PubMedCrossRefGoogle Scholar
  8. Broide R. S., Trembleau A., Ellison J. A., et al. (2004) Standardized quantitative in situ hybridization using radioactive oligonucleotide probes for detecting relative levels of mRNA transcripts verified by real-time PCR. Brain Res. 1000 211–222.PubMedCrossRefGoogle Scholar
  9. Camelo S., Iglesias A. H., Hwang D., et al. (2005) Transcriptional therapy with the histone deacetylase inhibitor trichostatin A ameliorates experimental autoimmune encephalomyelitis. J Neuroimmunol. 164, 10–21.PubMedCrossRefGoogle Scholar
  10. Chiurazzi P., Pomponi M. G., Pietrobono R., Bakker C. E., Neri G., and Oostra B. A. (1999) Synergistic effect of histone hyperacetylation and DNA demethylation in the reactivation of the FMR1 gene. Hum. Mol. Genet. 8, 2317–2323.PubMedCrossRefGoogle Scholar
  11. Choi J. H., Oh S. W., Kang M. S., et al. (2001) Expression profile of histone deacetylase 1 in gastric cancer tissues. Jpn. J. Cancer Res. 92, 1300–1304.PubMedGoogle Scholar
  12. Choi J. H., Kwon H. J., Yoon B. I., et al. (2005) Trichostatin A attenuates airway inflammation in mouse asthma model. Clin. Exp. Allergy 35, 89–96.PubMedCrossRefGoogle Scholar
  13. Dokmanovic M. and Marks P. A. (2005) Prospects: histone deacetylase inhibitors. J. Cell. Biochem. 96, 293–304.PubMedCrossRefGoogle Scholar
  14. Emerich D. F., Skinner S. J., Borlongan C. V., Vasconcellos A. V., and Thanos C. G. (2005) The choroid plexus in the rise, fall and repair of the brain. Bioessays 27, 262–274.PubMedCrossRefGoogle Scholar
  15. Ferrante R. J., Kublius J. K., Lee J., et al. (2003) Histone deacetylase inhibition by sodium butyrate chemotherapy ameliorates the neurodegenerative phenotype in Huntington's disease mice. J. Neurosci. 23, 9418–9427.PubMedGoogle Scholar
  16. Franklin K. B. J. and Paxinos G. (1997) The Mouse Brain in Stereotaxic Coordinates, Academic Press, San Diego, CA.Google Scholar
  17. Gao L., Cueto M. A., Asselbergs F., and Atadja P. (2002) Cloning and functional characterization of HDAC11, a novel member of the human histone deacetylase family. J. Biol. Chem. 277, 24,748–25,755.Google Scholar
  18. Gardian G., Yang L., Cleren C., Calingasan N. Y., Klivenyi P., and Beal M. F. (2005) Neuroprotective effects of phenylbutyrate in the N171-82O transgenic mouse model of Huntington's disease. J. Biol. Chem. 280, 556–563.PubMedGoogle Scholar
  19. Gardian G., Browne S. E., Choi D. K., et al. (2004) Neuroprotective effects of phenylbutyrate against MPTP neurotoxicity. Neuromol. Med. 5, 235–241.CrossRefGoogle Scholar
  20. Gregoretti I. V., Lee Y. M., and Goodson H. V. (2004) Molecular evolution of the histone deacetylase family: functional implications of phylogenetic analysis. J. Mol. Biol. 338, 17–31.PubMedCrossRefGoogle Scholar
  21. Haggarty S. J., Koeller K. M., Wong J. C., Grozinger C. M., and Schreiber, S. L. (2003) Domain-selective small-molecule inhibitor of histone deacetylase 6 (HDAC6)-mediated tubulin deacetylation. Proc. Natl. Acad. Sci. U. S. A. 100, 4389–4394.PubMedCrossRefGoogle Scholar
  22. Hao Y., Creson T., Zhang L., et al. (2004) Mood stabilizer valproate promotes ERK pathway-dependent cortical neuronal growth and neurogenesis. J. Neurosci. 24, 6590–6599.PubMedCrossRefGoogle Scholar
  23. Hockly E., Richon V. M., Woodman B., et al. (2003) Suberoylanilide hydroxamic acid, a histone deacetylase inhibitor, ameliorates motor deficits in a mouse model of Huntington's disease. Proc. Natl. Acad. Sci. U.S.A. 100, 2041–2046.PubMedCrossRefGoogle Scholar
  24. Hoshino M., Tagawa K., Okuda T., et al. (2003) Histone deacetylase activity is retained in primary neurons expressing mutant huntingtin protein. J. Neurochem., 87, 257–267.PubMedCrossRefGoogle Scholar
  25. Ito, K., Caramori G., Lim S., et al. (2002) Expression and activity of histone deacetylases in human asthmatic airways. Am. J. Respir. Crit. Care Med. 166, 392–396.PubMedCrossRefGoogle Scholar
  26. Ito K. K., Ito M., Elliott W. M., et al. (2005) Decreased histone deacetylase activity in chronic obstructive pulmonary disease. N. Engl. J. Med. 352, 1967–1976.PubMedCrossRefGoogle Scholar
  27. Jeong M. R., Hashimoto, R., Senatorov V. V., et al. (2003) Valproic acid, a mood stabilizer and anticonvulsant, protects rat cerebral cortical neurons from spontaneous cell death: a role of histone deacetylase inhibition. FEBS Lett. 542, 74–78.PubMedCrossRefGoogle Scholar
  28. Johnstone R. W. (2002) Histone-deacetylase inhibitors: novel drugs for the treatment of cancer. Nat. Rev. Drug Discov. 1, 287–299.PubMedCrossRefGoogle Scholar
  29. Kawaguchi Y., Kovacs J. J., McLaruin A., Vance J. M., Ito, A., and Yao T. P. (2003) The deacetylase HDAC6 regulates aggresome formation and cell viability in response to misfolded protein stress. Cell 115, 727–738.PubMedCrossRefGoogle Scholar
  30. Kelly W. K., O'Connor O. A., Krug L. M., et al. (2005) Phase I study of an oral histone deacetylase inhibitor, suberoylanilide hydroxamic acid, in patients with advanced cancer. J. Clin. Oncol. 23, 3923–3931.PubMedCrossRefGoogle Scholar
  31. Kouraklis G. and Theocharis S. (2002) Histone deacetylase inhibitors and anticancer therapy. Curr. Med. Chem. Anti-Cancer Agents 2, 477–484.CrossRefGoogle Scholar
  32. Langley B., Gensert J. M., Beal M. F., and Ratan R. R. (2005) Remodeling chromatin and stress resistance in the central nervous system: histone deacetylase inhibitors as noveland broadly effective neuroprotective agents. Curr. Drug Targets CNS Neurol. Disord. 4, 41–50.PubMedCrossRefGoogle Scholar
  33. Lin A. Y. (2005) Histone deacetylase activity and COPD, author reply. N. Engl. J. Med. 353, 528, 529.PubMedCrossRefGoogle Scholar
  34. Marks P. A., Miller T., and Richon V. M. (2003) Histone deacetylases. Curr. Opin. Pharmacol. 3, 344–351.PubMedCrossRefGoogle Scholar
  35. Marks P. A., Richon V. M., Miller T., and Kelley W. K. (2004) Histone deacetylase inhibitors. Adv. Cancer Res. 91, 137–168.PubMedCrossRefGoogle Scholar
  36. Moradei O., Maroun C. R., Paquin I., and Vaisburg A. (2005) Histone deacetylase inhibitors: latest developments, trends and prospects. Curr. Med. Chem. Anti-Cancer Agents 5, 529–560.CrossRefGoogle Scholar
  37. Naruse Y., Oh-hashi K., Iijima N., Naruse M., Yoshioka H., and Tanaka M. (2004) Circadian and light-induced transcription of clock gene Per1 depends on histone acetylation and deacetylation. Mol. Cell. Biol. 24, 6278–6287.PubMedCrossRefGoogle Scholar
  38. Panteleeva I., Rouaux C., Larmet Y., Boutillier S., Loeffler J. P., and Boutillier A. L. (2004) HDAC-3 participates in the repression of e2f-dependent gene transcription in primary differentiated neurons. Ann. N. Y. Acad. Sci. 1030, 656–660.PubMedCrossRefGoogle Scholar
  39. Ren M., Leng Y., Jeong M., Leeds P. R., and Chuang D. M. (2004) Valproic acid reduces brain damage induced by transient focal cerebral ischemia in rats: potential roles of histone deacetylase inhibition and heat shock protein induction. J. Neurochem. 89, 1358–1367.PubMedCrossRefGoogle Scholar
  40. Richon V. M., Zhou X., Rifkind R. A., and Marks P. A. (2001) Histone deacetylase inhibitors: development of suberoylanilide hydroxamic acid (SAHA) for the treatment of cancers. Blood Cell Mol. Dis. 27, 260–264.CrossRefGoogle Scholar
  41. Robyr D., Suka Y., Xenarios I., et al. (2002) Microarray deacetylation maps determine genome-wide functions for yeast histone deacetylases Cell 109, 437–446.PubMedCrossRefGoogle Scholar
  42. Roth S.Y., Denu J. M., and Allis C. D. (2001) Histone acetyltransferases. Annu. Rev. Biochem. 70, 81–120.PubMedCrossRefGoogle Scholar
  43. Saha R. N. and Pahan K. (2005) HATs and HDACs in neurodegeneration: a tale of disconcerted acetylation homeostasis. Cell Death Differ 39, 539–550.Google Scholar
  44. Shabbeer S., and Carducci M. A. (2005) Focus on deacetylation for therapeutic benefit. Investigational Drugs 8, 144–154.Google Scholar
  45. Shen S., Li J., and Casaccia-Bonnefil P. (2005) Histone modifications affect timing of oligodendrocyte progenitor differentiation in the developing rat brain. J. Cell. Biol. 169, 577–589.PubMedCrossRefGoogle Scholar
  46. Vaghefi H., and Neet K. E. (2004) Deacetylation of p53 after nerve growth factor treatment in PC12 cells as a post-translational modification mechanism of neurotrophin-induced tumor suppressor activation. Oncogene 23, 8078–8087.PubMedCrossRefGoogle Scholar
  47. Voelter-Mahlknecht S., Ho A. D., and Mahlknecht, U. (2005) Chromosomal organization and locolization of the novel class IV human histone deacetylase 11 gene. Int. J. Mol. Med. 16, 589–598.PubMedGoogle Scholar
  48. Yamaguchi M., Tonou-Fujimori N., Komori A., et al. (2005) Histone deacetylase 1 regulates retinal neurogenesis in zebrafish by suppressing Wnt and Notch signaling pathways. Development 132, 3027–3043.PubMedCrossRefGoogle Scholar
  49. Yu X., Guo Z. S., Marcu M. G., et al. (2002) Modulation of p53, ErbB1, ErbB2, and Raf-1 expression in lung cancer cells by depsipeptide FR901228. J. Natl. Cancer Inst. 94, 504–513.PubMedGoogle Scholar

Copyright information

© Humana Press Inc 2007

Authors and Affiliations

  • Ron S. Broide
    • 1
  • Jeff M. Redwine
    • 1
  • Najla Aftahi
    • 1
  • Warren Young
    • 1
  • Floyd E. Bloom
    • 1
  • Christopher. J. Winrow
    • 2
    Email author
  1. 1.NeuromeLa Jolla
  2. 2.Merck Research LaboratoriesWest Point

Personalised recommendations