Advertisement

Biological Trace Element Research

, Volume 115, Issue 2, pp 187–194 | Cite as

Insights on zinc regulation of food intake and macronutrient selection

  • Ming-Yan Jing
  • Jian-Yi Sun
  • Xiao-Yan Weng
Article

Abstract

Zinc (Zn) is an essential trace element required for human beings and animals. This divalent cation is involved in many physiological functions, including immune and antioxidant function, growth, and reproduction. Deficiency of Zn produces several pathological disorders and abnormalities in its metabolism, such as anorexia, weight loss, poor efficiency, and growth retardation. Although it has been known for more than 50 yr that Zn deficiency regularly and consistently causes anorexia in many animal species, the mechanism that causes this phenomenon still remains an enigma. The present review describes recent research investigating the relationship between Zn deficiency and the regulation of food intake, as well as macronutrient selection.

Index Entries

Zinc anorexia food intake macronutrient selection 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. A. Hendy, M. I. Yousef, and N. I. Naga, Effect of dietary zinc deficiency on hematological and biochemical parameters and concentrations of zinc, copper, and iron in growing rats, Toxicology 167, 163–170 (2001).PubMedCrossRefGoogle Scholar
  2. 2.
    I. E. Dreosti, zinc and the gene, Mutat. Res. 475, 161–167 (2001).PubMedGoogle Scholar
  3. 3.
    J. Y. Sun, M. Y. Jing, J. F. Wang, et al., Effect of zinc on biochemical parameters and changes in related gene expression assessed by cDNA microarrays in pituitary of growing rats, Nutrition 22, 187–196 (2006).PubMedCrossRefGoogle Scholar
  4. 4.
    A. S. Prasad, Biochemistry of zinc, Plenum, New York (1993).Google Scholar
  5. 5.
    M. I. Yousef, H. A. Hendy, F. M. Demerdash, and E. I. Elagamy, Dietary zinc deficiency induced-changes in the activity of enzymes and levels of free radicals, lipids and protein electrophoretic behavior in growing rats, Toxicology 175, 223–234 (2002).PubMedCrossRefGoogle Scholar
  6. 6.
    H. Tapiero and K. D. Tew, Trace elements in human physiology and pathology: zinc and metallothioneins, Biomed. Pharmacother. 57, 399–411 (2003).PubMedCrossRefGoogle Scholar
  7. 7.
    M. Kaji, zinc in endocrinology, Int Pediatr. 16, 1–7 (2001).Google Scholar
  8. 8.
    J. Y. Sun, M. Y. Jing, X. Y. Weng, et al., Effects of dietary zinc levels on the activities of enzymes, weights of organs and the concentrations of zinc and copper in growing rats, Biol. Trace. Element Res. 107(2), 153–165 (2005).CrossRefGoogle Scholar
  9. 9.
    J. Y. Sun, J. F. Wang, N. T. Zi, M. Y. Jing, and X. Y. Weng, Gene expression profiles analysis of the growing rat liver in response to different zinc status by cDNA microarray analysis, Biol. Trace Element Res. 115, 157–185 (2007).CrossRefGoogle Scholar
  10. 10.
    A. S. Prasad, A. Miale, Z. Farid, et al., Zinc metabolism in patients with the syndrome of iron deficiency anemia, hypogonadism and dwarfism, J. Lab. Clin. Med. 61, 537–549 (1963).PubMedGoogle Scholar
  11. 11.
    B. G. Stanley and S. F. Leibowitz, Neuropeptide Y injected in the paraventricular hypothalamus: a powerful stimulant of feeding behavior, Proc. Natl. Acad. Sci. USA 82, 3940–3943 (1985).PubMedCrossRefGoogle Scholar
  12. 12.
    R. G. Lee, T. M. Rains, C. Tovar-Palacio, et al., Zinc deficiency increases hypothalamic neuropeptide Y and neuropeptide Y mRNA levels and does not block neuropeptide Y-induced feeding, J. Nutr. 128, 1218–1223 (1998).PubMedGoogle Scholar
  13. 13.
    P. L. Selvais, C. Labuche, X. N. Nguyen, et al., Cyclic feeding behaviour and changes in hypothalamic galanin and neuropeptide Y gene expression induced by zinc deficiency in the rat, J. Neuroendocrinol. 9, 55–62 (1997).PubMedCrossRefGoogle Scholar
  14. 14.
    N. F. Shay and H. F. Mangian, Neurobiology of zinc-influenced eating behavior, J. Nutr. 130, 1493S-1499S (2000).PubMedGoogle Scholar
  15. 15.
    C. E. Huntington, N. F. Shay, E. Grouzmann, et al., Zinc status affects neurotransmitter activity in the paraventricular nucleus of rats, J. Nutr. 132, 270–275 (2002).PubMedGoogle Scholar
  16. 16.
    C. W. Levenson, Zinc regulation of food intake: new insights on the role of neuropeptide Y, Nutr. Rev. 61(7), 247–258 (2003).PubMedCrossRefGoogle Scholar
  17. 17.
    M. Fujimiya and A. Inui, Peptidergic regulation of gastrointestinal motility in rodents, Peptides 21, 1565–1582 (2000).PubMedCrossRefGoogle Scholar
  18. 18.
    S. C. Woods, Signals that influence food intake and body weight, Physiol Behav. 86, 709–716 (2005).PubMedCrossRefGoogle Scholar
  19. 19.
    M. Migaud, C. Durieux, J. Viereck, et al., The in vivo metabolism of cholecystokinin (CCK-8) is essentially ensured by aminopeptidase A, Peptides 17, 601–607 (1996).PubMedCrossRefGoogle Scholar
  20. 20.
    R. K. Blanchard and R. J. Cousins, Differential display of intestinal mRNAs regulated by dietary zinc, Proc. Natl. Acad. Sci. USA 93, 6863–6868 (1996).PubMedCrossRefGoogle Scholar
  21. 21.
    K. J. Kennedy, T. M. Rains, and N. F. Shay, Zinc deficiency changes preferred maconutrient intake in subpopulations of Sprague-Dawley outbred rats and reduces hepatic pyruvate kinase gene expression, J. Nutr. 128, 43–49 (1998).PubMedGoogle Scholar
  22. 22.
    J. E. Blundell, Serotonin and appetite, Neuropharmacology 23, 1537–1551 (1984).PubMedCrossRefGoogle Scholar
  23. 23.
    S. F. Leibowitz and J. T. Alexander, Hypothalamic serotonin in control of eating behavior, meal size and body weight, Biol. Psychiatry 44, 851–864 (1998).PubMedCrossRefGoogle Scholar
  24. 24.
    W. T. Chance, A. Balasubramaniam, F. S. Zhang, et al., Anorexia following the intrahypothalamic administration of amylin, Brain. Res. 539, 352–354 (1991).PubMedCrossRefGoogle Scholar
  25. 25.
    R. C. Frederich, A. Hamann, S. Anderson, et al., Leptin levels reflect body lipid content in mice: evidence for diet-induced resistance to leptin action, Nat. Med. 1, 1311–1314 (1995).PubMedCrossRefGoogle Scholar
  26. 26.
    S. K. Kim, Z. G. Lee, M. Shin, et al., The association of serum leptin with the reduction of food intake and body weight during electroacupuncture in rats, Pharm. Biochem. Behav. 83, 145–149 (2006).CrossRefGoogle Scholar
  27. 27.
    C. S. Mantzoros, A. S. Prasad, F. W. Beck, et al., Zinc may regulate serum leptin concentrations in humans, J. Am. Coll. Nutr. 17, 270–275 (1998).PubMedGoogle Scholar
  28. 28.
    J. C. Erick, G. Hollopeter, and R. D. Palmiter, Attenuation of the obesity syndrome of ob/ob mice by the loss of neuropeptide Y, Science 274, 1704–1707 (1996).CrossRefGoogle Scholar
  29. 29.
    M. W. Schwartz, D. G. Baskin, T. R. Bukowski, et al., Specificity of leptin action on elevated blood glucose levels and hypothalamic neuropeptide Y gene expression in ob/ob mice, Diabetes 45, 531–535 (1996).PubMedCrossRefGoogle Scholar
  30. 30.
    H. F. Mangian and R. G. Lee, G. L. Paul, et al., Zinc deficiency suppresses plasma leptin concentrations in rats, J. Nutr. Biochem. 9, 47–51 (1998).CrossRefGoogle Scholar
  31. 31.
    K. A. Ryan, R. Mitchel, and J. D. Shoemaker, Analysis of gas-chromatography-mass spectroscopy (GC-MS) as a tool to assess zinc status in humans, FASEB J. 12, 345 (1998).Google Scholar
  32. 32.
    M. D. Chen, Y. M. Song, and P. Y. Lin, Zinc may be a mediator of leptin production in humans, Life Sci. 66, 2143–2149 (2000).PubMedCrossRefGoogle Scholar
  33. 33.
    L. M. Gaetke, R. C. Frederich, H. S. Oz, et al., Decreased food intake rather than zinc deficiency is associated with changes in plasma leptin, metabolic rate, and activity levels in zinc-deficient rats, J. Nutr. Biochem. 13, 237–244 (2002).PubMedCrossRefGoogle Scholar
  34. 34.
    V. B. Barr, D. Malide, M. J. Zarnowski, et al., Insulin stimulates both leptin secretion and production by rat white adipose tissue, Endocrinology 138, 4463–4472 (1997).PubMedCrossRefGoogle Scholar
  35. 35.
    A. M. Huber and S. N. Gershoff, Effect of dietary zinc deficiency in rats on insulin release from the pancreas, Nutrition 103, 1739–1744 (1973).Google Scholar
  36. 36.
    P. G. Reeves and B. L. O’Dell, The effect of zinc deficiency on glucose metabolism in meal-fed rats, Br. Nutr. 49, 441–452 (1983).CrossRefGoogle Scholar
  37. 37.
    Z. Kechrid and N. Bouzerna, Effect of zinc deficiency on zinc and carbohydrate metabolism in genetically diabetic (C57BL/Ksj Db+/Db+) and non-diabetic original strain (C57BL/Ksj) mice, Turk. J. Med. Sci. 34, 367–373 (2004).Google Scholar
  38. 38.
    T. M. Rains and N. F. Shay, Zinc status specifically changes preferences for carbohydrate and protein in rats selecting from separate carbohydrate-, protein-, and fat-containing diets, J. Nutr. 125, 2874–2879 (1995).PubMedGoogle Scholar
  39. 39.
    National Research Council, Nutrient Requirements of Laboratory Animals, National Academy Press, Washington, DC (1995).Google Scholar
  40. 40.
    T. M. Rains, S. Hedrick, A. C. Randall, et al., Food intake patterns are altered during long-term zinc deficiency in rats, Physiol. Behav. 65, 473–478 (1998).PubMedCrossRefGoogle Scholar
  41. 41.
    P. G. Reeves and B. L. O’Dell, Short-term zinc deficiency in the rat and self-selection of dietary protein level, J. Nutr. 111, 375–383 (1981).PubMedGoogle Scholar
  42. 42.
    P. G. Reeves, Patterns of food intake and self-selection of macronutrients in rats during short-term deprivation of dietary zinc, J. Nutr. Biochem. 14, 232–243 (2003).PubMedCrossRefGoogle Scholar
  43. 43.
    C. C. Welch, M. K. Grace, C. J. Billington, et al., Preference and diet type affect macronutrient selection after morphine, NPY, norepinephrine, and deprivation, Am. J. Physiol. 266, R426-R433 (1994).PubMedGoogle Scholar

Copyright information

© Human Press Inc 2007

Authors and Affiliations

  • Ming-Yan Jing
    • 1
  • Jian-Yi Sun
    • 1
  • Xiao-Yan Weng
    • 2
  1. 1.The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal ScienceZhejiang UniversityHangzhouPeople’s Republic of China
  2. 2.College of Life ScienceZhejiang UniversityHangzhouPeople’s Republic of China

Personalised recommendations