Biological Trace Element Research

, Volume 115, Issue 3, pp 291–300 | Cite as

Uptake of zinc and copper by halophilic bacteria isolated from the dead sea shore, Jordan

  • Fouad A. Al-momani
  • Adnan M. Massadeh
  • Yazan A. Hadad


Ten Gram-positive and gram-negative bacterial cultures were recovered from nine water, mud, and soil samples collected from the Dead Sea shore at Suwaymah. All bacterial cultures were able to grow at 10% NaCl and at 45°C. They were able to grow in nutrient media supplemented with 1250 ppm of Zn. Most of them, except cultures 2 and 8, were able to grow in nutrient medium supplemented with 1000 ppm of Cu. After 2 wk of incubation of these 10 cultures at different concentrations (5, 25, 100, and 500 ppm), stock solutions of both Zn and Cu elements, the maximum absorption using atomic absorption spectrometry for Zn was achieved by culture 7 at 11.2%, 1.0%, 38.4%, and 84.54%, respectively, from the previous stock solutions, whereas the maximum absorption of the same concentration of Cu was achieved by culture 3 at 6.2%, 55.56%, 85.66%, and 90.82%, respectively, of the different concentrations. After 3 wk of incubation, the estimated absorption for Zn was achieved by cultures 2, 9, and 10 at 19.2%, 16.68%, 42.92%, and 76.5%, 18.2%, 21.56%, 32.22%, and 77.43%, and 20.8%, 23.52%, 32.22%, and 82.84% of the previous stocks. The maximum absorption of the same concentration of Cu was achieved by culture 3 at 32.6%, 49.88%, 90.44%, and 91.86%, respectively. The accumulation of the absorbed metals was found to be maximum in the protoplast of all cultures. The accumulation at the cell wall was maximum for cultures 2 and 6 for Zn and Cu, respectively, and between the cell wall and the plasma membrane, it was maximum for cultures 2 and 8 for Zn and Cu, respectively.

Index Entries

Copper zinc halophilic atomic absorption spectrometry (AAS) Dead Sea Jordan 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. M. Lasat, Phytoextraction of toxic metals: a review of biological mechanisms, J. Environ. Qual. 31, 109–120 (2002).PubMedCrossRefGoogle Scholar
  2. 2.
    A. M. Massadeh, F. M. Al-Momani, and H. I. Haddad, Removal of lead and cadmium by halopholic bacteria isolated from the Dead Sea shore, Jordan, Biol. Trace Element Res. 108, 259–269 (2005).CrossRefGoogle Scholar
  3. 3.
    A. Ventosa, J. J. Nieto, and A. Oren, Biology of moderately halophilic aerobic bacteria, Microbiol. Mol. Biol. Rev. 62(2), 504–544 (1998).PubMedGoogle Scholar
  4. 4.
    C. Rensing, M. Ghosh, and B. P. Rosen, Families of soft-metal-ion-transporting ATPases, J. Bacteriol. 181(19), 5891–5897 (1999).PubMedGoogle Scholar
  5. 5.
    M. A. Amoozegar, J. Hamedi, M. Dadashipour, and S. Shariatpanahi, Effect of salinity on the tolerance to toxic metals and oxyanions in native moderately halophilic sporeforming bacilli, World J. Microbiol. Biotechnol. 21, 1237–1243 (2005).CrossRefGoogle Scholar
  6. 6.
    X. C. Kretschmer, G. Meitzner, J. L. Gardea-Torresdey, and R. Webb, Determination of Cu environments in the Cyanobacterium Anabaena flos-aquae by X-ray absorption spectroscopy, Appl. Environ. Microbiol. 70(2), 771–780 (2004).PubMedCrossRefGoogle Scholar
  7. 7.
    H. Babich and G. Stotzky, Toxicity of zinc to fungi, bacteria, and coliphages: influence of chloride ions, Appl. Environ. Microbiol. 36(6), 906–914 (1978).PubMedGoogle Scholar
  8. 8.
    S. E. Lowe, M. K. Jain, and J. G. Zeikus, Biology, ecology, and biotechnological applications of anaerobic bacteria adapted to environmental stresses in temperature, pH, salinity, or substrates, Microbiol. Rev. 57(2), 451–509 (1993).PubMedGoogle Scholar
  9. 9.
    J. J. Nieto, A. Ventosa, and F. Ruiz-Berraquero, Susceptibility of halobacteria to heavy metals, Appl. Environ. Microbiol. 53(5), 1199–1202 (1987).PubMedGoogle Scholar
  10. 10.
    K. Saeki, T. Kunito, H. Oyaizu, and S. Matsumoto, Relationships between bacterial tolerance levels and forms of copper and zinc in soils, J. Environ. Qual. 31, 1570–1575 (2002).PubMedCrossRefGoogle Scholar
  11. 11.
    J. J. Nieto, R. Fernandez-Castillo, C. Marquez, A. Ventosa, E. Quesada, and F. Ruiz-Berraquero, Survey of metal tolerance in moderately halophilic eubacteria, Appl. Environ. Microbiol. 55(9), 2385–2390 (1989).PubMedGoogle Scholar
  12. 12.
    P. D. Franzmann, H. R. Burton, and T. A. McMeekin, Halomonas subglaciescola, a new species of halotolerant bacteria isolated from the Antarctica, Int. J. Syst. Bacteriol. 37, 27–34 (1987).CrossRefGoogle Scholar
  13. 13.
    R. H. Vreeland, C. D. Litchfield, E. L. Martin, and E. Eliot, Halomonas elongata, a new genus and species of extremely salt tolerant bacteria, Int. J. Syst. Bacteriol. 30, 485–495 (1980).Google Scholar
  14. 14.
    A. Ventosa, E. Quesada, F. Rodriguez-Valera, F. Ruiz-Ber-raquero, and A. Ramos-Cormenzana. Numerical taxonomy of moderately halophilic Gram-negative rods, J. Gen. Microbiol. 128, 1959–1968 (1982).Google Scholar
  15. 15.
    J. T. Trevors, K. M. Oddie, and B. H. Belliveau, Metal resistance in bacteria, FEMS Microbiol. Rev. 32, 39–54 (1985).CrossRefGoogle Scholar
  16. 16.
    M. T. Garcia, J. J. Nieto, A. Ventosa, and F. Ruiz-Berraquero, The susceptibility of the moderate halophilic vibrio costicola to heavy metals, J. Appl. Bacteriol. 37, 251–256 (1987).Google Scholar
  17. 17.
    J. A. Washington II and V. L. Sutter, Dilution procedures, in Manual of Clinical Microbiology, 3rd ed. (E. H. Lennette, A. Balows, W. J. Hausler, et al. eds.), American Society for Microbiology, Washington, D.C. pp. 453–458 (1980).Google Scholar
  18. 18.
    R. H. Blatz and P. Matsushima, Protoplast fusion in Streptomyces: condition for efficient genetic recombination and cell regeneration, J. Gen. Microbiol. 127, 137–146 (1981).Google Scholar

Copyright information

© Humana Press Inc 2007

Authors and Affiliations

  • Fouad A. Al-momani
    • 1
  • Adnan M. Massadeh
    • 2
  • Yazan A. Hadad
    • 1
  1. 1.Department of Biotechnology, Faculty of Science and ArtJordan University of Science and TechnologyIrbidJordan
  2. 2.Department of Medicinal Chemistry and Pharmacognosy, Faculty of PharmacyJordan University of Science and TechnologyIrbidJordan

Personalised recommendations