Immunologic Research

, Volume 37, Issue 2, pp 113–133

Initiation of primary anti-vaccinia virus immunity in vivo

  • Matthew A. Fischer
  • Christopher C. Norbury


The primary focus of our work is the initiation of an antiviral immune response. While we employ many experimental systems to address this fundamental issue, much of our work revolves around the use of vaccinia virus. Concerns over the negative effects of vaccination have prevented the return of the smallpox immunization program to the general population and underscored the importance of understanding the primary immune response to vaccinia virus. This response is comprised of a complex symphony of immune system components employing a variety of different mechanisms. In this review, we will both highlight the roles of many of these components and touch on the applications of vaccinia virus in the laboratory and the clinic.

Key Words

Vaccinia Macrophages Neutrophils NK cells γδ T cells B cells CD4 T cells CD8 T cells Dendritic cells 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Marshall E: Gene therapy death prompts review of adenovirus vector. Science 1999; 286: 2244–2245.PubMedCrossRefGoogle Scholar
  2. 2.
    Radetsky M: Smallpox: a history of its rise and fall. Pediatr Infect Dis J 1999; 18:85–93.PubMedCrossRefGoogle Scholar
  3. 3.
    Downie AW: Immunological relationship of the virus of spontaneous cowpox to vaccinia virus. J Exp Pathol 1939; 20: 158–176.Google Scholar
  4. 4.
    Centers for Disease Control and Prevention: Human Monkeypox—Kasai Oriental, Demoncratic Republic of Congo, Feburary 1996–October 1997. MMWR Morb Mortal Wkly 1997; 46:1168–1171.Google Scholar
  5. 5.
    Reed KD, Melski JW, Graham MB, et al: The detection of monkeypox in humans in the Western Hemisphere. N Engl J Med 2004; 350:342–350.PubMedCrossRefGoogle Scholar
  6. 6.
    Halsell JS, Riddle JR, Atwood JE, et al: Myopericarditis following smallpox vaccination among vaccinia-naive US military personnel. JAMA 2003; 289:3283–3289.PubMedCrossRefGoogle Scholar
  7. 7.
    Fenner F: Smallpox: emergence, global spread, and eradication. Hist Philos Life Sci 1993; 15:397–420.PubMedGoogle Scholar
  8. 8.
    Lane JM, Ruben FL, Neff JM, Millar JD: Complications of smallpox vaccination, 1968. N Engl J Med 1969; 281:1201–1208.PubMedCrossRefGoogle Scholar
  9. 9.
    Edghill-Smith Y, Golding H, Manischewitz J, et al: Smallpox vaccine-induced antibodies are necessary and sufficient for protection against monkeypox virus. Nat Med 2005; 11:740–747.PubMedCrossRefGoogle Scholar
  10. 10.
    Earl PL, Americo JL, Wyatt LS, et al: Immunogenicity of a highly attenuated MVA smallpox vaccine and protection against monkeypox. Nature 2004; 428:182–185.PubMedCrossRefGoogle Scholar
  11. 11.
    Mossman K, Üpton C, Buller RM, McFadden G: Species specificity of ectromelia virus and vaccinia virus interferon-gamma binding proteins. Virology 1995; 208:762–769.PubMedCrossRefGoogle Scholar
  12. 12.
    Alcami A, Smith GL: Vaccinia, cowpox, and camelpox viruses encode soluble gamma interferon receptors with novel broad species specificity. J Virol 1995; 69:4633–4639.PubMedGoogle Scholar
  13. 13.
    Symons JA, Tscharke DC, Price N, Smith GL: A study of the vaccinia virus interferon-gamma receptor and its contribution to virus virulence. J Gen Virol 2002; 83:1953–1964.PubMedGoogle Scholar
  14. 14.
    Tscharke DC, Smith GL: A model for vaccinia virus pathogenesis and immunity based on intradermal injection of mouse ear pinnae. J Gen Virol 1999; 80 (Pt 10):2751–2755.PubMedGoogle Scholar
  15. 15.
    Tscharke DC, Reading PC, Smith GL: Dermal infection with vaccinia virus reveals roles for virus proteins not seen using other inoculation routes. J Gen Virol 2002; 83:1977–1986.PubMedGoogle Scholar
  16. 16.
    Tscharke DC, Karupiah G, Zhou J, et al: Identification of poxvirus CD8+ T cell determinants to enable rational design and characterization of smallpox vaccines. J Exp Med 2005; 201:95–104.PubMedCrossRefGoogle Scholar
  17. 17.
    Reading PC, Smith GL: A kinetic analysis of immune mediators in the lungs of mice infected with vaccinia virus and comparison with intradermal infection. J Gen Virol 2003; 84:1973–1983.PubMedCrossRefGoogle Scholar
  18. 18.
    Jacobs N, Chen RA, Gubser C, Najarro P, Smith GL: Intradermal immune response after infection with vaccinia virus. J Gen Virol 2006; 87:1157–1161.PubMedCrossRefGoogle Scholar
  19. 19.
    Hume DA, Robinson AP, MacPherson GG, Gordon S: The mononuclear phagocyte system of the mouse defined by immunohistochemical localization of antigen F4/80. Relationship between macrophages, Langerhans cells, reticular cells, and dendritic cells in lymphoid and hematopoietic organs. J Exp Med 1983; 158:1522–1536.PubMedCrossRefGoogle Scholar
  20. 20.
    Ginhoux F, Tacke F, Angeli V, et al: Langerhans cells arise from monocytes in vivo. Nat Immunol 2006; 7:265–273.PubMedCrossRefGoogle Scholar
  21. 21.
    Nishmi M, Bernkopf H: The toxic effect of vaccinia virus on leucocytes in vitro. J Immunol 1958; 81:460–466.PubMedGoogle Scholar
  22. 22.
    Natuk RJ, Holowczak JA: Vaccinia virus proteins on the plasma membrane of infected cells. III. Infection of pentoneal macrophages. Virology 1985; 147:354–372.PubMedCrossRefGoogle Scholar
  23. 23.
    Broder CC, Kennedy PE, Michaels F, Berger EA: Expression of foreign genes in cultured human primary macrophages using recombinant vaccinia virus vectors. Gene 1994; 142:167–174.PubMedCrossRefGoogle Scholar
  24. 24.
    Beard JW, Rous PJ: The fate of vaccinia virus on cultivation in vitro with Kupffer cells (RE cells). J Exp Med 1938; 67:883–910.CrossRefPubMedGoogle Scholar
  25. 25.
    Tompkins WA, Zarling JM, Rawls WE: In vitro assessment of cellular immunity to vaccinia virus: contribution of lymphocytes and macrophages. Infect Immun 1970; 2:783–790.PubMedGoogle Scholar
  26. 26.
    Avila FR, Schultz RM, Tompkins WA: Specific macrophage immunity to vaccinia virus: macrophagevirus interaction. Infect Immun 1972; 6:9–16.PubMedGoogle Scholar
  27. 27.
    McLaren C, Cheng H, Spicer DL, Tompkins WA: Lymphocyte and macrophage responses after vaccinia virus infections. Infect Immun 1976; 14:1014–1021.PubMedGoogle Scholar
  28. 28.
    Greer B, Delfs D, McElree H: Electron microscope study of the interaction of vaccinia virus with macrophages from immunized and nonimmunized rabbits. Infect Immun 1974; 9:452–459.PubMedGoogle Scholar
  29. 29.
    Ueda S, Nozima T: Delayed hypersensitivity in vaccinia-infected mice. II. Resistance of peritoneal macrophages against vaccinia infection. Acta Virol 1973; 17:41–49.PubMedGoogle Scholar
  30. 30.
    Koszinowski U, Kruse F, Thomssen R: Interactions between vaccinia virus and sensitized macrophages in vitro. Arch Virol 1975; 48:335–345.PubMedCrossRefGoogle Scholar
  31. 31.
    Buchmeier NA, Gee SR, Murphy FA, Rawls WE: Abortive replication of vaccinia virus in activated rabbit macrophages. Infect Immun 1979; 26:328–338.PubMedGoogle Scholar
  32. 32.
    Rodriguez JR, Rodriguez D, Esteban M: Interferon treatment inhibits early events in vaccinia virus gene expression in infected mice. Virology 1991; 185:929–933.PubMedCrossRefGoogle Scholar
  33. 33.
    Karupiah G, Xie QW, Buller RM, Nathan C, Duarte C, MacMicking JD: Inhibition of viral replication by interferon-gamma-induced nitric oxide synthase. Science 1993; 261:1445–1448.PubMedCrossRefGoogle Scholar
  34. 34.
    Melkova Z, Esteban M: Interferon-gamma severly inhibits DNA synthesis of vaccinia virus in a macrophage cell line. Virology 1994; 198:731–735.PubMedCrossRefGoogle Scholar
  35. 35.
    Harris N, Buller RM, Karupiah G: Gamma interferon-induced, nitric oxide-mediated inhibition of vaccinia virus replication. J Virol 1995; 69:910–915.PubMedGoogle Scholar
  36. 36.
    Karupiah G., Harris N: Inhibition of viral replication by nitric oxide and its reversal by ferrous sulfate and tricarboxylic acid cycle metabolites. J Exp Med 1995; 181:2171–2179.PubMedCrossRefGoogle Scholar
  37. 37.
    van Rooijen N, Sanders A: Liposome mediated depletion of macrophages: mechanism of action, preparation of liposomes and applications. J Immunol Methods 1994; 174:83–93.PubMedCrossRefGoogle Scholar
  38. 38.
    Nakano H, Yanagita M, Gunn MD: CD11c(+)B220(+) Gr-1(+) cells in mouse lymph nodes and spleen display characteristics of plasmacytoid dendritic cells. J Exp Med 2001; 194:1171–1178.PubMedCrossRefGoogle Scholar
  39. 39.
    West BC, Eschete ML, Cox ME, King JW: Neutrophil uptake of vaccinia virus in vitro. J Infect Dis 1987; 156:597–606.PubMedGoogle Scholar
  40. 40.
    Jones JF: Interactions between human neutrophils and vaccinia virus: induction of oxidative metabolism and virus inactivation. Pediatr Res 1982; 16:525–529.PubMedGoogle Scholar
  41. 41.
    Moss B: Poxvirus entry and membrane fusion. Virology 2006; 344:48–54.PubMedCrossRefGoogle Scholar
  42. 42.
    Natuk RJ, Welsh RM: Accumulation and chemotaxis of natural killer/large granular lymphocytes at sites of virus replication. J Immunol 1987; 138:877–883.PubMedGoogle Scholar
  43. 43.
    Prlic M, Gibbs J, Jameson SC: Characteristics of NK cell migration early after vaccinia infection. J Immunol 2005; 175:2152–2157.PubMedGoogle Scholar
  44. 44.
    Brutkiewicz RR, Klaus SJ, Welsh RM: Window of vulnerability of vaccinia virus-infected cells to natural killer (NK) cell-mediated cytolysis correlates with enhanced NK cell triggering and is concomitant with a decrease in H-2 antigen expression. 1992; 11:203–214.Google Scholar
  45. 45.
    Bottino C, Castriconi R, Moretta L, Moretta A: Cellular ligands of activating NK receptors. Trends Immunol 2005; 26:221–226.PubMedCrossRefGoogle Scholar
  46. 46.
    Chisholm SE, Reyburn HT: Recognition of vaccinia virus-infected cells by human natural killer cells depends on natural cytotoxicity receptors. J Virol 2006; 80:2225–2233.PubMedCrossRefGoogle Scholar
  47. 47.
    Bukowski JF, Morita CT, Brenner MB: Recognition and destruction of virus-infected cells by human gamma-delta CTL. J Immunol 1994; 153:5133–5140.PubMedGoogle Scholar
  48. 48.
    Kennedy MK, Glaccum M, Brown SN, et al: Reversible defects in natural killer and memory CD8 T cell lineages in interleukin 15-deficient mice. J Exp Med 2000; 191:771–780.PubMedCrossRefGoogle Scholar
  49. 49.
    Prlic M, Blazar BR, Farrar MA, Jameson SC: In vivo survival and homeostatic proliferation of natural killer cells. J Exp Med 2003; 197:967–976.PubMedCrossRefGoogle Scholar
  50. 50.
    Stitz L, Baenziger J, Pircher H, Hengartner H, Zinkernagel RM: Effect of rabbit anti-asialo GM1 treatment in vivo or with anti-asialo GM1 plus complement in vitro on cytotoxic T cell activities. J Immunol 1986; 136:4674–4680.PubMedGoogle Scholar
  51. 51.
    Welsh RM, Lin MY, Lohman BL, Varga SM, Zarozinski CC, Selin LK: Alpha beta and gamma delta T-cell networks and their roles in natural resistance to viral infections. Immunol Rev 1997; 159:79–93.PubMedCrossRefGoogle Scholar
  52. 52.
    Selin LK, Santolucito PA, Pinto AK, Szomolanyi-Tsudá E, Welsh RM: Innate immunity to viruses: control of vaccinia virus infection by gamma delta T cells. J Immunol 2001; 166:6784–6794.PubMedGoogle Scholar
  53. 53.
    Glasgow LA, Habel K: The role of interferon in vaccinia virus infection of mouse embryo tissue culture. J Exp Med 1962; 115:503–512.PubMedCrossRefGoogle Scholar
  54. 54.
    Diebold SS, Montoya M, Unger H, et al: Viral infection switches non-plasmacytoid dendritic cells into high interferon producers. Nature 2003; 424:324–328.PubMedCrossRefGoogle Scholar
  55. 55.
    Colamonici OR, Domanski P, Swieitzer SM, Larner A, Buller RM: Vaccinia virus B18R gene encodes a type I interferon-binding protein that blocks interferon alpha transmembrane signaling. J Biol Chem 1995; 270:15974–15978.PubMedCrossRefGoogle Scholar
  56. 56.
    Symons JA, Alcami A, Smith GL: Vaccinia virus encodes a soluble type 1 interferon receptor of novel structure and broad species specificity. 1995; 81:551–560.Google Scholar
  57. 57.
    Liptakova H, Kontsekova E, Alcami A, Smith GL, Kontsek P: Analysis of an interaction between the soluble vaccinia virus-coded type I interferon (IFN)-receptor and human IFN-alphal and IFN-alpha2. Virology 1997; 232:86–90.PubMedCrossRefGoogle Scholar
  58. 58.
    van den Broek MF, Muller U, Huang S, Zinkernagel RM, Aguet M: Immune defence in mice lacking type I and/or type II interferon receptors. Immunol Rev 1995; 148:5–18.PubMedCrossRefGoogle Scholar
  59. 59.
    Kohonen-Corish MR, King NJ, Woodhams CE, Ramshaw, IA: Immunodeficient mice recover from infection with vaccinia virus expressing interferongamma. Eur J Immunol 1990; 20:157–161.CrossRefGoogle Scholar
  60. 60.
    Huang S, Hendriks W, Althage A, et al: Immune response in mice that lack the interferon-gamma receptor. Science 1993; 259:1742–1745.PubMedCrossRefGoogle Scholar
  61. 61.
    Bartlett NW, Buttigieg K, Kotenko SV, Smith GL: Murine interferon lambdas (type III interferons) exhibit potent antiviral activity in vivo in a poxvirus infection model. J Gen Virol 2005; 86:1589–1596.PubMedCrossRefGoogle Scholar
  62. 62.
    Xu R, Johnson AJ, Liggitt D, Bevan MJ: Cellular and humoral immunity against vaccinia virus infection of mice. J Immunol 2004; 172:6265–6271.PubMedGoogle Scholar
  63. 63.
    Davies DH, McCausland MM, Valdez C, et al: Vaccinia virus H3L envelope protein is a major target of neutralizing antibodies in humans and elicits protection against lethal challenge in mice. J Virol 2005; 79:11724–11733.PubMedCrossRefGoogle Scholar
  64. 64.
    Law M, Putz MM, Smith GL: An investigation of the therapeutic value of vaccinia-immune IgG in a mouse pneumonia model. J Gen Virol 2005; 86:991–1000.PubMedCrossRefGoogle Scholar
  65. 65.
    Lustig S, Fogg C, Whitbeck JC, Eisenberg RJ, Cohen GH, Moss B: Combinations of polyclonal or monoclonal antibodies to proteins of the outer membranes of the two infectious forms of vaccinia virus protect mice against a lethal respiratory challenge. J Virol 2005; 79:13454–13462.PubMedCrossRefGoogle Scholar
  66. 66.
    Shearer JD, Siemann L, Gerkovich M, House RV: Biological activity of an intravenous preparation of human vaccinia immune globulin in mouse models of vaccinia virus infection. Antimicrob Agents Chemother 2005; 49:2634–2641.PubMedCrossRefGoogle Scholar
  67. 67.
    Wherry EJ, Rajagopal D, Eisenlohr LC: Use of vaccinia virus expression vectors to investigate antigen processing and presentation. Methods Mol Biol 2001; 156:89–109.PubMedGoogle Scholar
  68. 68.
    Amanna IJ, Slifka MK, Crotty S: Immunity and immunological memory following smallpox vaccination. Immunol Rev 2006;211:320–337.PubMedCrossRefGoogle Scholar
  69. 69.
    Zinkernagel RM, Althage A: Antiviral protection by virus-immune cytotoxic T cells: infected target cells are lysed before infectious virus progeny is assembled. J Exp Med 1977; 145:644–651.PubMedCrossRefGoogle Scholar
  70. 70.
    Harrington LE, Most Rv R, Whitton JL, Ahmed R: Recombinant vaccinia virus-induced T-cell immunity: quantitation of the response to the virus vector and the foreign epitope. J Virol 2002; 76:3329–3337.PubMedCrossRefGoogle Scholar
  71. 71.
    Spriggs MK, Koller BH, Sato T, et al: Beta 2-microglobulin-, CD8+ T-cell-deficient mice survive inoculation with high doses of vaccinna virus and exhibit altered IgG responses. Proc Natl Acad Sci USA 1992; 89:6070–6074.PubMedCrossRefGoogle Scholar
  72. 72.
    Belyakov IM, Earl P, Dzutsev A, et al: Shared modes of protection against poxvirus infection by attenuated and conventional smallpox vaccine viruses. Proc Natl Acad Sci USA 2003; 100:9458–9463.PubMedCrossRefGoogle Scholar
  73. 73.
    Terajima M, Cruz J, Raines G, et al: Quantitation of CD8+ T cell responses to newly identified HLA-A*0201-restricted T cell epitopes conserved among vaccinia and variola (smallpox) viruses. J Exp Med 2003; 197:927–932.PubMedCrossRefGoogle Scholar
  74. 74.
    Drexler I, Staib C, Kastenmuller W, et al: Identification of vaccinia virus epitope-specific HLA-A*0201-testricted T cells and comparative analysis of smallpox vaccines. Proc Natl Acad Sci USA 2003; 100:217–222.PubMedCrossRefGoogle Scholar
  75. 75.
    Snyder JT, Belyakov IM, Dzutsev A, Lemonnier F, Berzofsky JA: Protection against lethal vaccinia virus challenge in HLA-A2 transgenic mice by immunization with a single CD8+ T-cell peptide epitope of vaccinia and variola viruses. J Virol 2004; 78:7052–7060.PubMedCrossRefGoogle Scholar
  76. 76.
    Mathew A, Terajima M, West K, et al: Indentification of murine poxvirus-specific CD8+CTL epitopes with distinct functional profiles. J Immunol 2005; 174:2212–2219.PubMedGoogle Scholar
  77. 77.
    Pasquetto V, Bui HH, Giannino R, et al: HLA-A*0201, HLA-A*1101, and HLA-B*0702 transgenic mice recognize numerous poxvirus determinants from a wide variety of viral gene products. J Immunol 2005; 175:5504–5515.PubMedGoogle Scholar
  78. 78.
    Oseroff C, Kos F, Bui HH, et al: HLA class I-restricted responses to vaccinia recognize a broad array of proteins mainly involved in virulence and viral gene regulation. Proc Natl Acad Sci USA 2005; 102:13980–13985.PubMedCrossRefGoogle Scholar
  79. 79.
    Terajima M, Cruz J, Leporati AM, Demkowicz WE Jr, Kennedy JS, Ennis FA: Identification of vaccinia CD8+ T-cell epitopes conserved among vaccinia and variola viruses restricted by common MHC class I molecules, HLA-A2 or HLA-B7. Hum Immunol 2006; 67:512–520.PubMedCrossRefGoogle Scholar
  80. 80.
    Hanada K, Yewdell JW, Yang JC: Immune recognition of a human renal cancer antigen through post-translational protein splicing. Nature 2004; 427:252–256.PubMedCrossRefGoogle Scholar
  81. 81.
    Sette A, Vitiello A, Reherman B, et al: The relationship between class I binding affinity and immunologenicity of potential cytotoxic T cell cpotopes. J Immunol 1994; 153:5586–5592.PubMedGoogle Scholar
  82. 82.
    Vitiello A, Yuan L, Chesnut RW, et al: Immunodominance analysis of CTL responses to influenza PR8 virus reveals two new dominant and subdominant Kb-restricted epitopes. J Immunol 1996; 157:5555–5562.PubMedGoogle Scholar
  83. 83.
    Tscharke DC, Woo WP, Sakala IG, et al: Poxvirus CD8+ T-cell determinants and cross-reactivity in BALB/c mice. J Virol 2006; 80:6318–6323.PubMedCrossRefGoogle Scholar
  84. 84.
    Banchereau J, Steinman RM: Dendritic cells and the control of immunity. Nature 1998; 392:245–252.PubMedCrossRefGoogle Scholar
  85. 85.
    Bontkes HJ, Ruizendaal JJ, Schreurs MW, Kramer D, Meijer CJ, Hooijberg E: Antigen gene transfer to human plasmacytoid dendritic cells using recombinant adenovirus and vaccinia virus vectors. Cell Oncol 2005; 27:175–182.PubMedGoogle Scholar
  86. 86.
    Princiotta MF, Finzi D, Qian SB, et al: Quantitating protein synthesis, degradation, and endogenous antigen processing. Immunity 2003; 18:343–354.PubMedCrossRefGoogle Scholar
  87. 87.
    Bronte V, Carroll MW, Goletz TJ, et al: Antigen expression by dendritic cells correlates with the therapeutic effectiveness of a model recombinant poxvirus tumor vaccine. Proc Natl Acad Sci USA 1997; 94:3183–3188.PubMedCrossRefGoogle Scholar
  88. 88.
    Engelmayer J, Larsson M, Subklewe M, et al: Vaccinia virus inhibits the maturation of human dendritic cells: a novel mechanism of immune evasion. J Immunol 1999; 163:6762–6768.PubMedGoogle Scholar
  89. 89.
    Engelmayer J, Larsson M, Lee A, et al: Mature dendritic cells infected with canarypox virus elicit strong anti-human immunodeficiency virus CD8+ and CD4+ T-cell responses from chronically infected individuals. J Virol 2001; 75:2142–2153.PubMedCrossRefGoogle Scholar
  90. 90.
    Larsson M, Fonteneau JF, Somersan S, et al: Efficiency of cross presentation of vaccinia virus-derived antigens by human dendritic cells. Eur J Immunol 2001; 31:3432–3442.PubMedCrossRefGoogle Scholar
  91. 91.
    Becker Y, Sprecher E: Langerhans cells in vaccinia virus infection in mouse skin. Arch Virol 1989; 107:307–313.PubMedCrossRefGoogle Scholar
  92. 92.
    He Y, Zhang J, Donahue C, Falo LD Jr: Skin-derived dendritic cells induce potent CD8(+) T cell immunity in recombinant letivector-mediated genetic immunization. Immunity 2006; 24:643–656.PubMedCrossRefGoogle Scholar
  93. 93.
    Norbury CC, Malide D, Gibbs JS, Bennink JR, Yewdell JW. Visualizing priming of virus-specific CD8+ T cells by infected dendritic cells in vivo. Nat Immunol 2002; 3:265–271.PubMedCrossRefGoogle Scholar
  94. 94.
    Belz GT, Smith CM, Eichnet D, et al: Cutting edge: conventional CD8alpha(+) dendritic cells are generally involved in priming CTL immunity to viruses. J Immunol 2004; 172:1996–2000.PubMedGoogle Scholar
  95. 95.
    Lanzavecchia A, Reid PA, Watts C. Irreversible association of peptides with class II MHC molecules in living cells. Nature 1992; 357:249–252.PubMedCrossRefGoogle Scholar
  96. 96.
    Pinet VM, Long EO: Peptide loading onto recycling HLA-DR molecules occurs in early endosomes. Eur J Immunol 1998; 28:799–804.PubMedCrossRefGoogle Scholar
  97. 97.
    Busch R, Cloutier I, Sekaly RP, Hammerling GJ: Invariant chain protects class II histocompatibility antigens from binding intact polypeptides in the endoplasmic reticulum. EMBO J 1996; 15:418–428.PubMedGoogle Scholar
  98. 98.
    Malnati MS, Marti M, LaVaute T, et al: Processing pathways for presentation of cytosolic antigen to MHC class II-restricted T cells. Nature 1992; 357:702–704.PubMedCrossRefGoogle Scholar
  99. 99.
    MaInati MS, Ceman S, Weston M, DeMars R, and Long EO: Presentation of cytosolic antigen by HLA-DR requires a function encoded in the class II region of the MHC. J Immunol 1993; 151:6751–6756.Google Scholar
  100. 100.
    Oxenius A, Bachmann MF, Ashton-Rickardt PG, Tonegawa S, Zinkernagel RM, Hengarter H: Presentation of endogenous viral proteins in association with major histocompatibility complex class II: on the role of intracellular compartmentalization, invariant chain and the TAP transporter system. Eur J Immunol 1995; 25:3402–3411.PubMedCrossRefGoogle Scholar
  101. 101.
    Basta S, Chen W, Bennink JR, Yewdell JW: Inhibitory effects of cytomegalovirus proteins US2 and US11 point to contributions from direct priming and cross-priming in induction of vaccinia virus-specific CD8(+) T cells. J Immunol 2002; 168:5403–5408.PubMedGoogle Scholar
  102. 102.
    Shen X, Wong SB, Buck CB, Zhang J, Siliciano RF: Direct priming and cross-priming contribute differentially to the induction of CD8+ CTL following exposure to vaccinia virus via different routes. J Immunol 2002; 169:4222–4229.PubMedGoogle Scholar
  103. 103.
    Yewdell JW, Bennink JR: Immunodominance in major histocornpatibility complex class I-restricted T lymphocyte responses. Annu Rev Immunol 1999; 17:51–88.PubMedCrossRefGoogle Scholar
  104. 104.
    Smith CL, Mirza F, Pasquetto V, et al: Immunodominance of poxviral-specific CTL in a human trial of recombinant-modified vaccinia Ankara. J Immunol 2005; 175:8431–8437.PubMedGoogle Scholar
  105. 105.
    Smith GL, Symons JA, Alcami A: Immune modulation by proteins secreted from cells infected by vaccinia virus. Arch Virol Suppl 1999; 15:111–129.PubMedGoogle Scholar
  106. 106.
    Wyatt LS, Earl PL, Eller LA, Moss B: Highly attenuated smallpox vaccine protects mice with and without immune deficiencies against pathogenic vaccinia virus challenge. Proc Natl Acad Sci USA 2004; 101:4590–4595.PubMedCrossRefGoogle Scholar
  107. 107.
    Sutter G, Moss B: Novel vaccinia vector derived from the host range restricted and highly attenuated MVA strain of vaccinia virus. Dev Biol Stand 1995; 84:195–200.PubMedGoogle Scholar
  108. 108.
    Staib C, Kisling S, Erfle V, Sutter G: Inactivation of the viral interleukin 1beta receptor improves CD8+ T-cell memory responses elicited upon immunization with modified vaccinia virus Ankara. J Gen Virol 2005; 86:1997–2006.PubMedCrossRefGoogle Scholar
  109. 109.
    Clark RH, Kenyon JC, Bartlett NW, Tscharke DC, Smith GL: Deletion of gene A41L enhances vaccinia virus immunogenicity and vaccine efficacy. J Gen Virol 2006; 87:29–38.PubMedCrossRefGoogle Scholar
  110. 110.
    Coupar BE, Andrew ME, Both GW, Boyle DB: Temporal regulation of influenza hemagglutinin expression in vaccinia virus recombinants and effects on the immune response. Eur J Immunol 1986; 16:1479–1487.PubMedCrossRefGoogle Scholar
  111. 111.
    Hodge JW, Abrams S, Schlom J, Kantor, JA: Induction of antitumor immunity by recombinant vaccinia viruses expressing B7-1 or B7-2 costimulatory molecules. Cancer Res 1994; 54:5552–5555.PubMedGoogle Scholar
  112. 112.
    Hodge JW, McLaughlin JP, Abrams SI, Shupert WL, Schlom J, Kantor JA: Admixture of a recombinant vaccinia virus containing the gene for the costimulatory molecule B7 and a recombinant vaccinia virus containing a tumor-associated antigen gene results in enhanced specific T-cell responses and antitumor immunity. Cancer Res 1995; 55:3598–3603.PubMedGoogle Scholar
  113. 113.
    Chamberlain RS, Carroll MW, Bronte V, et al: Costimulation enhances the active immunotherapy effect of recombinant anticancer vaccines. Cancer Res 1996; 56:2832–2836.PubMedGoogle Scholar
  114. 114.
    Kaufman HL, Deraffele G, Mitcham J, et al: Targeting the local tumor microenvironment with vaccinia virus expressing B7.1 for the treatment of melanoma. J Clin Invest 2005; 115:1903–1912.PubMedCrossRefGoogle Scholar
  115. 115.
    Marti WR, Oertli D, Meko JB, Norton JA, Tsung K: Induction of antigen-presenting capacity in tumor cells upon infection with non-replicating recombinant vacinia virus encoding murine MHC class II and costimulatory molecules. J Immunol Methods 1997; 200:191–198.PubMedCrossRefGoogle Scholar
  116. 116.
    Oertli D, Marti WR, Norton JA, Tsung K: Artificial antigen-presenting cells engineered by recombinant vaccinia viruses expressing antigen, MHC class II, and costimulatory molecules elicit proliferation of CD4+ lymphocytes in vitro. Clin Exp Immunol 1997; 110:144–149.PubMedCrossRefGoogle Scholar
  117. 117.
    Hodge JW, Sabzevari H, Yafal AG, Gritz L, Lorenz MG, Schlom J: A triad of costimulatory molecules synergize to amplify T-cell activation. Cancer Res 1999; 59:5800–5807.PubMedGoogle Scholar
  118. 118.
    Hodge JW, Grosenbach DW, Rad AN, Giuliano M, Sabzevari H, Schlorn J: Enhancing the potency of peptide-pulsed antigen presenting cells by vector-driven hyperexpression of a triad of costimulatory molecules. Vaccine 2001; 19:3552–3567.PubMedCrossRefGoogle Scholar
  119. 119.
    Kudo-Saito C, Schlom J, Hodge JW: Intratumoral vaccination and diversified subcutaneous/intratumoral vaccination with recombinant poxviruses encoding a tumor antigen and multiple costimulatory molecules. Clin Cancer Res 2004; 10:1090–1099.PubMedCrossRefGoogle Scholar
  120. 120.
    Marshall JL, Gulley JL, Arlen PM, et al: Phase I study of sequential vaccinations with fowlpox-CEA(6D)-TRICOM alone and sequentially with vaccinia-CEA(6D)-TRICOM, with and without granulocyte-macrophage colony-stimulating factor, in patients with carcinoembryonic antigen-expressing carcinomas. J Clin Oncol 2005; 23:720–731.PubMedCrossRefGoogle Scholar
  121. 121.
    Dipaola R, Plante M, Kaufman H, et al: A phase I trial of pox PSA vaccines (PROSTVAC(R)-VF) with B7-1, ICAM-1, and LFA-3 co-stimulatory molecules (TRICOM™) in patients with prostate cancer. J Transl Med 2006; 4:1.PubMedCrossRefGoogle Scholar
  122. 122.
    Garnett CT, Greiner JW, Tsang KY, et al: TRICOM vector based cancer vaccines. Curr Pharm Des 2006; 12:351–361.PubMedCrossRefGoogle Scholar
  123. 123.
    Kudo-Saito C, Hodge JW, Kwak H, Kim-Schulze S, Schlom J, Kaufman HL: 4-1BB ligandenhances tumor-specific immunity of poxvirus vaccines. Vaccine 2006; 24:4975–4986.PubMedCrossRefGoogle Scholar
  124. 124.
    Lorenz MG, Kantor JA, Schlom J, Hodge JW: Antitumor immunity elicited by a recombinant vaccinia virus expressing CD70 (CD27L). Hum Gene Ther 1999; 10:1095–1103.PubMedCrossRefGoogle Scholar
  125. 125.
    Ramshaw IA, Andrew ME, Phillips SM, Boyle DB, Coupar BE: Recovery of immunodeficient mice from a vaccinia virus/IL-2 recombinant infection. Nature 1987; 329:545–546.PubMedCrossRefGoogle Scholar
  126. 126.
    Flexner C, Hugin A, Moss B: Prevention of vaccinia virus infection in immunodeficient mice by vector-directed IL-2 expression. Nature 1987; 330:259–262.PubMedCrossRefGoogle Scholar
  127. 127.
    Karupiah G, Blanden RV, Ramshaw IA: Interferon gamma is involved in the recovery of athymic nude mice from recombinant vaccinia virus/interleukin 2 infection. J Exp Med 1990; 172:1495–1503.CrossRefGoogle Scholar
  128. 128.
    Ruby J, Fordham S, Kasprzak A, Osvath S, Ramshaw, I: The immunobiology of murine interleukin-1 alpha encoded by recombinant vaccinia virus. Cytokine 1991; 3:92–97.PubMedCrossRefGoogle Scholar
  129. 129.
    Peplinski GR, Tsung K, Whitman ED, Meko JB, Norton JA: Construction and expression in tumor cells of a recombinant vaccinia virus encoding human interleukin-1 beta. Ann Surg Oncol 1995;2:151–159.PubMedCrossRefGoogle Scholar
  130. 130.
    Ramsay AJ, Kohonen-Corish M: Interleukin-5 expressed by a recombinant virus vector enhances specific mucosal IgA responses in vivo. Eur J Immunol 1993; 23:3141–3145.PubMedCrossRefGoogle Scholar
  131. 131.
    Ramsay AJ, Husband AJ, Ramshaw IA, et al: The role of interleukin-6 in mucosal IgA antibody responses in vivo. Science 1994; 264:561–563.PubMedCrossRefGoogle Scholar
  132. 132.
    Kurilla MG, Swaminathan S, Welsh RM, Kieff E, Brutkiewicz RR: Effects of virally expressed interleukin-10 on vaccinia virus infection in mice. J Virol 1993; 67:7623–7628.PubMedGoogle Scholar
  133. 133.
    Meko JB, Tsung K, Norton JA: Cytokine production and antitumor effect of a nonreplicating, noncytopathic recombinant vaccinia virus expressing interleukin-12. Surgery 1996; 120:274–282; discussion 282–283.PubMedCrossRefGoogle Scholar
  134. 134.
    Patera AC, Pesnicak L, Bertin J, Cohen, JI: Interleukin 17 modulates the immune response to vaccinia virus infection. Virology 2002; 299:56–63.PubMedCrossRefGoogle Scholar
  135. 135.
    Qin H, Chatterjee SK: Cancer gene therapy using tumor cells infected with recombinant vaccinia virus expressing GM-CSF. Hum Gene Ther 1996; 7:1853–1860.PubMedCrossRefGoogle Scholar
  136. 136.
    Sambhi SK, Kohonen-Corish MR, Ramshaw IA: Local production of tumor necrosis factor encoded by recombinant vaccinia virus is effective in controlling viral replication in vivo. Proc Natl Acad Sci USA 1991; 88:4025–4029.PubMedCrossRefGoogle Scholar
  137. 137.
    Andrew ME, Coupar BEH: Biological effects of recombinant vaccinia virus-expressed interleukin 4. Cytokine 1992; 4:281–286.PubMedCrossRefGoogle Scholar
  138. 138.
    Sharma DP, Ramsay AJ, Maguire DJ, Rolph MS, Ramshaw IA: Interleukin-4 mediates down regulation of antiviral cytokine expression and cytotoxic T-lymphocyte responses and exacerbates vaccinia virus infection in vivo. J Virol 1996; 70:7103–7107.PubMedGoogle Scholar
  139. 139.
    Esteban DJ, Buller RM: Ectromelia virus: the causative agent of mousepox. J Gen Virol 2005; 86:2645–2659.PubMedCrossRefGoogle Scholar
  140. 140.
    Karupiah G, Buller RM, Van Rooijen N, Duarte CJ, Chen J: Different roles for CD4+ and CD8+ T lymphocytes and macrophage subsets in the control of a generalized virus infection. J Virol 1996; 70:8301–8309.PubMedGoogle Scholar
  141. 141.
    Jackson RJ, Ramsay AJ, Christensen CD, Beaton S, Hall DF, Ramshaw IA: Expression of mouse interleukin-4 by a recombinant ectromelia virus suppresses cytolytic lymphocyte responses and overcomes genetic resistance to mousepox. J Virol 2001; 75:1205–1210.PubMedCrossRefGoogle Scholar
  142. 142.
    Mullbacher A, Lobigs M: Cration of killer poxvirus could have been predicted. J Virol 2001; 75:8353–8355.PubMedCrossRefGoogle Scholar
  143. 143.
    Aung S, Graham BS: IL-4 diminishes perforin-mediated and increases Fas ligand-mediated cytotoxicity In vivo. J Immunol 2000; 164:3487–3493.PubMedGoogle Scholar
  144. 144.
    Kagi D, Seiler P, Pavlovic J, et al: The roles of perforinand Fas-dependent cytotoxicity in protection against cytopathic and noncytopathic viruses. Eur J Immunol 1995; 25:3256–3262.PubMedCrossRefGoogle Scholar
  145. 145.
    Mullbacher A, Hla RT, Museteanu C, Simon MM: Perforin is essential for control of ectromelia virus but not related poxviruses in mice. J Virol 1999; 73:1665–1667.PubMedGoogle Scholar

Copyright information

© Humana Press Inc 2007

Authors and Affiliations

  • Matthew A. Fischer
    • 1
  • Christopher C. Norbury
    • 1
    • 2
  1. 1.Department of Microbiology and Immunology, Pennsylvania StateUniversity, Milton S. Hershey College of MedicineHersheyUSA
  2. 2.H107 Hershey Medical CenterHershey

Personalised recommendations