Annals of Biomedical Engineering

, Volume 25, Issue 4, pp 713–725 | Cite as

Technical features of a CCD video camera system to record cardiac fluorescence data

  • William T. Baxter
  • Jorge M. Davidenko
  • Leslie M. Loew
  • Joseph P. Wuskell
  • José Jalife
Research Articles


A charge-coupled device (CCD) camera was used to acquie movies of transmembrane activity from thin slices of sheep ventricular epicardial muscle stained with a voltage-sensitive dye. Compared with photodiodes, CCDs have high spatial resolution, but low temporal resolution. Spatial resolution in our system ranged from 0.04 to 0.14 mm/pixel; the acquisition rate was 60, 120, or 240 frames/sec. Propagating waves were readily visualized after subtraction of a background image. The optical signal had an amplitude of 1 to 6 gray levels, with signal-to-noise ratios between 1.5 and 4.4. Because CCD cameras in-tegrate light over the frame interval, moving objects, including propagating waves, are blurred in the resulting movies. A computer model of such an integrating imaging system was developed to study the effects of blur, noise, filtering, and quantization on the ability to measure conduction velocity and action potential duration (APD). The model indicated that blurring, filtering, and quantization do not affect the ability to localize wave fronts in the optical data (i.e., no systematic error in determining spatial position), but noise does increase the uncertainty of the measurements. The model also showed that the low frame rates of the CCD camera introduced a systematic error in the calculation of APD: for cutoff levels >50%, the APD was erroneusly long. Both noise and quantization increased the uncertainty in the APD measurements. The optical measures of conduction velocity were not significantly different from those measured simultaneously with microelectrodes. Optical APDs, however, were longer than the electrically recorded APDs. This APD error could be reduced by using the 50% cutoff level and the fastest frame rate possible.


Optical mapping Voltage-sensitive dyes Electro-physiology Conduction velocity Action potential duration 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baxter, W. T., J. M. Davidenko, C. Cabo, and J. Jalife. Video imaging of cardiac transmembrane activity.SPIE Proc. Clin. Appl. Modern Imaging Technol. 2132:357–366, 1994.Google Scholar
  2. 2.
    Blasdel, G. G., and G. Salama. Voltage-sensitive dyes reveal a modular organization in monkey striate cortex.Nature 321:579–585, 1986.PubMedCrossRefGoogle Scholar
  3. 3.
    Cabo, C., A. M. Pertsov, W. T. Baxter, J. M. Davidenko, R. A. Gray, and J. Jalife. Wave-front curvature as a cause of slow conduction and block in isolated cardiac muscle.Circ. Res. 75:1014–1028, 1994.PubMedGoogle Scholar
  4. 4.
    Cohen, L. B., B. M. Salzberg, H. V. Davila, W. N. Ross, D. Landowne, A. S. Waggoner, and C. H. Wang. Changes in axon fluorescence during activity: molecular probes of membrane potential.J. Membr. Biol. 19:1–36, 1974.PubMedCrossRefGoogle Scholar
  5. 5.
    Davidenko, J. M., A. V. Pertsov, R. Salomonsz, W. Baxter, and J. Jalife. Stationary and drifting spiral waves of excitation in isolated cardiac muscle.Nature 355:349–351, 1992.PubMedCrossRefGoogle Scholar
  6. 6.
    Dillon, S. M. Use of voltage sensitive dyes to record, map and image cardiac electrical activation. In: Imaging analysis and simulation of the cardiac system, edited by S. Sideman and R. Beyar. London: Freund Publishing, 1990, pp. 739–766.Google Scholar
  7. 7.
    Dillon, S., and M. Morad. A new laser scanning system for measuring action potential propagation in the heart.Science 214:453–456, 1981.PubMedCrossRefGoogle Scholar
  8. 8.
    Dillon, S. M., M. A. Allessie, P. C. Ursell, and A. L. Wit. Influence of anisotropic tissue on reentrant circuit in the epicardial border zone of subacute canine infarcts.Circ. Res. 63:182–206, 1988.PubMedGoogle Scholar
  9. 9.
    Effimov, I. R., D. T. Huang, J. M. Rendt, and G. Salama. Optical mapping of repolarization and refractoriness from intact hearts.Circulation 90:1469–1480, 1994.Google Scholar
  10. 10.
    Falk, C. X., J. Y. Wu, L. B. Cohen, and A. K. Tang. Non-uniform expression of habituation in the activity of distinct classes of neurons in theAplysia abdominal ganglion.J. Neurosci. 13:4072–4081, 1993.PubMedGoogle Scholar
  11. 11.
    Fast, V. G., and A. G. Kléber. Microscopic conduction in cultured strands of neonatal rat heart cells measured with voltage-sensitive-dyes.Circ. Res. 73:914–925, 1993.PubMedGoogle Scholar
  12. 12.
    Frazier, D. W., P. D. Wolf, J. M. Wharton, A. S. L. Tang, W. M. Smith, and R. E. Ideker Stimulus-induced critical point: mechanism for initiation of reentry in normal canine myocardium.J. Clin. Invest. 83:1039–1052, 1989.PubMedGoogle Scholar
  13. 13.
    Girouard, S. D., K. R. Laurita, and D. S. Rosenbaum. Unique characteristics of optically recorded action potentials.J. Cardiovasc. Electrophysiol. 7:1024–1038, 1996.PubMedCrossRefGoogle Scholar
  14. 14.
    Gray, R. A., J. Jalife, A. Panfilov, W. T. Baxter, C. Cabo, J. Davidenko, and A. M. Pertsov. Nonstationary vortexlike reentrant activity as a mechanism of polymorphic ventricular tachycardia in the isolated rabbit heart.Circulation 91:2454–2469, 1995.PubMedGoogle Scholar
  15. 15.
    Grinvald, A. Real-time optical mapping of neuronal activity: from single growth cones to the intact mammalian brain.Ann. Rev. Neurosci. 8:263–305, 1985.PubMedCrossRefGoogle Scholar
  16. 16.
    Hirota, A, K. Sato, Y. Momose-Sato, T. Sakai, and K. Kamino. A new simultaneous 1020-site optical recording system for monitoring neural activity using voltage-sensitive dyes.J. Neurosci. Methods 56:187–194, 1995.PubMedCrossRefGoogle Scholar
  17. 17.
    Janesick, J. R., T. Elliott S. Collins, M. M. Blouke, and J. Freeman. Scientific charge-coupled devices.Opt. Eng. 26: 692–714, 1987.Google Scholar
  18. 18.
    Kauer, J. S.: Real-time imaging of evoked activity in local circuits of the salamander olfactory bulb.Nature 331:166–168, 1988.PubMedCrossRefGoogle Scholar
  19. 19.
    Lasser-Ross, N., H. Miyakawa, V. Lev-Ram, S. R. Young, and W. N. Ross. High time resolution fluorescence imaging with a CCD camera.J. Neurosci. Methods 36:253–261, 1991.PubMedCrossRefGoogle Scholar
  20. 20.
    Liu, Y., C. Cabo, R. Salomonsz, M. Delmar J. Davidenko, and J. Jalife. Effects of diacetyl monoxime on the electrical properties of sheep and guinea pig ventricular muscle.Cardiovasc. Res. 27:1991–1997, 1993.PubMedCrossRefGoogle Scholar
  21. 21.
    Loew, L. M., L. B. Cohen, J. Dix, E. N. Fluhler, V. Montana, G. Salama, and J. Y. Wu. A naphthyl analog of the aminostyryl pyridinium class of potentiometric membrane dyes shows consistent sensitivity in a variety of tissue, cell, and model membrane preparations.J. Membr. Biol. 130:1–10, 1992.PubMedGoogle Scholar
  22. 22.
    MacKay, C.D. Fast optical imaging techniques. In: Fluorescence spectroscopy, edited by O. S. Wolfbeis. New York: Springer-Verlag, 1993, pp. 25–30.Google Scholar
  23. 23.
    Pertsov, A. M., J. M. Davidenko, R. Salomonsz, W. T. Baxter, and J. Jalife. Spiral waves of excitation underlie reentrant activity in isolated cardiac muscle.Circ. Res. 72:631–650, 1993.PubMedGoogle Scholar
  24. 24.
    Ratzlaff, E. H., and A. Grinvald. A tandem-lens epifluorescence macroscope: hundred-fold brightness advantage for wide-field imaging.J. Neurosci. Methods 36:127–137, 1991.PubMedCrossRefGoogle Scholar
  25. 25.
    Rohr, S., and B. M. Salzberg. Multiple site optical recording of transmembrane voltage (MSORTV) in patterned growth heart cell cultures: assessing electrical behavior, with microsecond resolution, on a cellular and subcellular seale.Biophys. J. 67:1301–1315, 1994.PubMedCrossRefGoogle Scholar
  26. 26.
    Russ, J. C.. The Image Processing Handbook, Boca Raton, FL: CRC Press, 1992, pp. 1–445.Google Scholar
  27. 27.
    Salama, G. Optical measurements of transmembrane potential in heart. In: Spectrosopic membrane probes, vol. 3, edited by L. M. Loew. Boca Raton, FL: CRC Press, 1988, pp. 137–199.Google Scholar
  28. 28.
    Salama, G., and M. Morad. Merocyanine 540 as an optical probe of transmembrane electrical activity in the heart.Science 191:485–487, 1976.PubMedCrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 1997

Authors and Affiliations

  • William T. Baxter
    • 1
  • Jorge M. Davidenko
    • 1
  • Leslie M. Loew
    • 2
  • Joseph P. Wuskell
    • 2
  • José Jalife
    • 1
  1. 1.Department of PharmacologySUNY Health Science CenterSyracuseUSA
  2. 2.Department of Physiologythe University of Connecticut Health CenterFarmington

Personalised recommendations