Lifting smooth homotopies of orbit spaces

  • Gerald W. Schwarz


Algebraic Group Representation Space Orbit Space Isotropy Class Lift Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    E. M. Andreev, E. B. Vinberg, andA. G. Elashvili, Orbits of greatest dimension in semi-simple linear Lie groups,Functional Anal. Appl.,1 (1967), 257–261.CrossRefGoogle Scholar
  2. [2]
    E. Bierstone, Lifting isotopies from orbit spaces,Topology,14 (1975), 245–252.zbMATHCrossRefGoogle Scholar
  3. [3]
    A. Borel,Linear Algebraic Groups, New York, Benjamin (1969).zbMATHGoogle Scholar
  4. [4]
    N. Bourbaki,Algèbre, 3rd ed., Paris, Hermann (1962).Google Scholar
  5. [5]
    ———,Groupes et Algèbres de Lie, Paris, Hermann (1968).zbMATHGoogle Scholar
  6. [6]
    G. E. Bredon, Fixed point sets and orbits of complementary dimension,in Seminar on Transformation Groups,Ann. of Math. Studies, No.46, Princeton, Princeton Univ. Press (1960), 195–231.Google Scholar
  7. [7]
    ———,Introduction to Compact Transformation Groups, New York, Academic Press (1972).Google Scholar
  8. [8]
    ---,Biaxial Actions, mimeographed notes, Rutgers University (1974).Google Scholar
  9. [9]
    C. Chevalley,Theory of Lie Groups, Princeton, Princeton University Press (1946).zbMATHGoogle Scholar
  10. [10]
    ———,Théorie des Groupes de Lie, t. III, Paris, Hermann (1955).Google Scholar
  11. [11]
    ———, Invariants of finite groups generated by reflections,Amer. J. Math.,77 (1955), 778–782.zbMATHCrossRefGoogle Scholar
  12. [12]
    M. Davis,Smooth Actions of the Classical Groups, thesis, Princeton University (1974).Google Scholar
  13. [13]
    ---,Regular On, Un,and Spn manifolds, to appear.Google Scholar
  14. [14]
    ———, Smooth G-manifolds as collections of fiber bundles,Pacific. J. Math.,77 (1978), 315–363.zbMATHGoogle Scholar
  15. [15]
    ——— andW. C. Hsiang, Concordance classes of Un and Spn actions on homotopy spheres,Ann. of Math.,105 (1977), 325–341.CrossRefGoogle Scholar
  16. [16]
    ---, ---, andJ. Morgan,Concordance classes of regular O(n)-actions on homotopy spheres, to appear.Google Scholar
  17. [17]
    J. Dieudonné, Topics in Local Algebra,Notre Dame Mathematical Lectures, No.10, Notre Dame, University of Notre Dame Press (1967).zbMATHGoogle Scholar
  18. [18]
    ——— andJ. Carrell,Invariant Theory, Old and New, New York, Academic Press (1971).zbMATHGoogle Scholar
  19. [19]
    E. B. Dynkin, Semisimple subalgebras of semisimple Lie algebras,Amer. Math. Soc. Transl.,6 (1957), 111–244.Google Scholar
  20. [20]
    ———, Maximal subgroups of the classical groups,Amer. Math. Soc. Transl.,6 (1957), 245–378.Google Scholar
  21. [21]
    A. G. Elashvili, Canonical form and stationary subalgebras of points of general position for simple linear Lie groups,Functional Anal. Appl.,6 (1972), 44–53.zbMATHCrossRefGoogle Scholar
  22. [22]
    ———, Stationary sublgebras of points of the common state for irreducible linear Lie groups,Functional Anal. Appl.,6 (1972), 139–148.zbMATHCrossRefGoogle Scholar
  23. [23]
    D. Erle andW. C. Hsiang, On certain unitary and symplectic actions with three orbit types,Amer. J. Math.,94 (1972), 289–308.zbMATHCrossRefGoogle Scholar
  24. [24]
    G. Glaeser, Racine carrée d’une fonction différentiable,Ann. Inst. Fourier,13 (1963), 203–210.zbMATHGoogle Scholar
  25. [25]
    M. Golubitsky andV. Guillemin, Stable Mappings and Their Singularities,Graduate Texts in Mathematics,14, New York, Springer-Verlag, 1973.Google Scholar
  26. [26]
    H. Grauert, On Levi’s problem and the mbedding of real-analytic manifolds,Ann. of Math.,68 (1958), 460–472.CrossRefGoogle Scholar
  27. [27]
    A. Grothendieck, Produits tensoriels topologiques et espaces nucléaires,Mem. Amer. Math. Soc.,16 (1955).Google Scholar
  28. [28]
    ---,Cohomologie Locale des Faisceaux Cohérents et Théorèmes de Lefschetz Locaux et Globaux (SGA 2), Amsterdam, North-Holland (1968).Google Scholar
  29. [29]
    ———, Local Cohomolgoy (Notes by R. Hartshorne),Lecture Notes in Mathematics, No.41, New York, Springer-Verlag (1967).Google Scholar
  30. [30]
    R. C. Gunning andH. Rossi,Analytic Functions of Several Complex Variables, Englewood Cliffs, Prentice-Hall (1965).zbMATHGoogle Scholar
  31. [31]
    G. Hochschild,The Structure of Lie Groups, San Francisco, Holden-Day (1965).zbMATHGoogle Scholar
  32. [32]
    ——— andG. D. Mostow, Representations and representative functions on Lie groups III,Ann. of Math.,70 (1957), 85–100.CrossRefGoogle Scholar
  33. [33]
    M. Hochster, Rings of invariants of tori, Cohen-Macaulay rings generated by monomials, and polytopes,Ann. of Math.,96 (1972), 318–337.CrossRefGoogle Scholar
  34. [34]
    ——— andJ. A. Eagon, Cohen-Macaulay rings, invariant theory, and the generic perfection of determinantal loci,Amer. J. Math.,93 (1971), 1020–1058.zbMATHCrossRefGoogle Scholar
  35. [35]
    ——— andJ. Roberts, Rings of invariants of reductive groups acting on regular rings are Cohen-Macaulay,Adv. in Math.,13 (1974), 115–175.zbMATHCrossRefGoogle Scholar
  36. [36]
    W. C. Hsiang andW. Y. Hsiang, Differentiable actions of compact connected classical groups: I,Amer. J. Math.,89 (1967), 705–786.zbMATHCrossRefGoogle Scholar
  37. [37]
    ———, Differentiable actions of compact connected classical groups: II,Ann. of Math.,92 (1970), 189–223.CrossRefGoogle Scholar
  38. [38]
    W. Y. Hsiang, On the principal orbit type and P. A. Smith theory of SU(p) actions,Topology,6 (1967), 125–135.zbMATHCrossRefGoogle Scholar
  39. [39]
    J. E. Humphreys, Introduction to Lie Algebras and Representation Theory,Graduate Texts in Mathematics,9, New York, Springer-Verlag (1972).zbMATHGoogle Scholar
  40. [40]
    ———, Linear Algebraic Groups,Graduate Texts in Mathematics,21, New York, Springer-Verlag (1975).zbMATHGoogle Scholar
  41. [41]
    K. Jänich, Differenzierbare Mannigfaltigkeiten mit Rand als Orbiträume differenzierbarer G-Mannigfaltigkeiten ohne Rand,Topology,5 (1966), 301–320.zbMATHCrossRefGoogle Scholar
  42. [42]
    ———, On the classification of O(tn)-manifolds,Math. Ann.,176 (1968), 53–76.zbMATHCrossRefGoogle Scholar
  43. [43]
    B. Kostant, Lie group representations on polynomial rings,Amer. J. Math.,85 (1963), 327–402.zbMATHCrossRefGoogle Scholar
  44. [44]
    M. Krämer, Eine Klassifikation bestimmter Untergruppen kompakter zusammenhängender Liegruppen,Comm. in Alg.,3 (1975), 691–737.zbMATHCrossRefGoogle Scholar
  45. [45]
    ---, Some tips on the decomposition of tensor product representations of compact connected Lie groups, to appear inReports on Mathematical Physics.Google Scholar
  46. [46]
    S. Lang,Algebra, Reading, Addison-Wesley (1965).zbMATHGoogle Scholar
  47. [47]
    J. A. Leslie, On a differentiable structure for the group of diffeomorphisms,Topology,6 (1967), 263–271,zbMATHCrossRefGoogle Scholar
  48. [48]
    S. Łojasiewicz, Ensembles Semi-analytiques,Lecture Notes, I.H.E.S. (1965).Google Scholar
  49. [49]
    D. Luna, Sur les orbites fermées des groupes algébriques réductifs,Invent. Math.,16 (1972), 1–5.zbMATHCrossRefGoogle Scholar
  50. [50]
    ———, Slices étales,Bull. Soc. Math. France, Mémoire33 (1973), 81–105.zbMATHGoogle Scholar
  51. [51]
    ———, Adhérences d’orbite et invariants,Invent. Math.,29 (1975), 231–238.zbMATHCrossRefGoogle Scholar
  52. [52]
    ———, Fonctions différentiables invariantes sous l’opération d’un groupe réductif,Ann. Inst. Fourier,26 (1976), 33–49.zbMATHGoogle Scholar
  53. [53]
    B. Malgrange,Division des distributions, Séminaire L. Schwartz (1959–1960), exposés 21–25.Google Scholar
  54. [54]
    ———,Ideals of Differentiable Functions, Bombay, Oxford University Press (1966).zbMATHGoogle Scholar
  55. [55]
    J. N. Mather, Stratifications and mappings, inDynamical Systems, New York, Academic Press (1973), 195–232.Google Scholar
  56. [56]
    ———, Differentiable invariants,Topology,16 (1977), 145–155.zbMATHCrossRefGoogle Scholar
  57. [57]
    G. D. Mostow, Self-adjoint groups,Ann. of Math.,62 (1955), 44–55.CrossRefGoogle Scholar
  58. [58]
    D. Mumford, Geometric Invariant Theory,Erg. der Math., Bd34, New York, Springer-Verlag (1965).Google Scholar
  59. [59]
    ---,Introduction to Algebraic Geometry, preliminary version, Harvard University (1966).Google Scholar
  60. [60]
    R. Narasimhan, Introduction to the Theory of Analytic Spaces,Lecture Notes in Mathematics, No.25, New York, Springer-Verlag (1966).zbMATHGoogle Scholar
  61. [61]
    R. S. Palais, The classification of G-spaces,Mem. Amer. Math. Soc., No.36 (1960).Google Scholar
  62. [62]
    ———, Slices and equivariant embeddings,in Seminar on Transformation Groups,Ann. of Math. Studies, No.46, Princeton, Princeton Univ. Press (1960), 101–115.Google Scholar
  63. [63]
    R. Richardson, Principal orbit types for algebraic transformation spaces in characteristic zero,Invent. Math.,16 (1972), 6–14.zbMATHCrossRefGoogle Scholar
  64. [64]
    F. Ronga, Stabilité locale des applications équivariantes,in Differential Topology and Geometry, Dijon 1974Lecture Notes in Mathematics, No.484, New York, Springer-Verlag (1975), 23–35.CrossRefGoogle Scholar
  65. [65]
    M. Schlessinger, Rigidity of quotient singularities,Invent. Math.,14 (1971), 17–26.zbMATHCrossRefGoogle Scholar
  66. [66]
    G. Schwarz, Smooth functions invariant under the action of a compact Lie group,Topology,14 (1975), 63–68.zbMATHCrossRefGoogle Scholar
  67. [67]
    ———, Representations of simple Lie groups with regular rings of invariants,Invent. Math.,49 (1978), 167–191.zbMATHCrossRefGoogle Scholar
  68. [68]
    ———, Representations of simple Lie groups with a free module of covariants,Invent. Math.,50 (1978), 1–12.zbMATHCrossRefGoogle Scholar
  69. [69]
    A. Seidenberg, A new decision method for elementary algebra,Ann. of Math.,60 (1954), 365–374.CrossRefGoogle Scholar
  70. [70]
    J.-P. Serre. Géométrie algébrique et géométrie analytique,Ann. Inst. Fourier,6 (1955–1956), 1–42.Google Scholar
  71. [71]
    ———, Algèbre Locale. Multiplicités,Lecture Notes in Mathematics, No.11, New York, Springer-Verlag (1965).zbMATHGoogle Scholar
  72. [72]
    Y. T. Siu, Techniques of Extension of Analytic Objects,Lecture Notes in Pure and Applied Mathematics, No.8, New York, Marcel Dekker (1974).zbMATHGoogle Scholar
  73. [73]
    J.-Cl. Tougeron, Idéaux de Fonctions Différentiables,Erg. der Math., Bd71, New York, Springer-Verlag (1972).zbMATHGoogle Scholar
  74. [74]
    D. Vogt, Charakterisierung der Unterräume vons, Math. Z.,155 (1977), 109–117.zbMATHCrossRefGoogle Scholar
  75. [75]
    ———, Subspaces and quotient spaces of (s), in Functional Analysis: Surveys and Recent Results,North-Holland Math. Studies, Vol.27;Notas de Mat., No.63, Amsterdam, North-Holland (1977), 167–187.Google Scholar
  76. [76]
    --- andM. Wagner,Charakterisierung der Quotientenräume von s und eine Vermutung von Martineau, to appear.Google Scholar
  77. [77]
    Th.Vust,Covariants de groupes algébriques réductifs, thèse, Univ. de Genève (1974).Google Scholar
  78. [78]
    ———, Opération de groupes réductifs dans un type de cônes presque homogènes,Bull. Soc. Math. France,102 (1974), 317–334.zbMATHGoogle Scholar
  79. [79]
    G. S. Wells,Isotopies of semianalytic spaces of finite type, to appear.Google Scholar
  80. [80]
    H. Weyl,The Classical Groups, 2nd ed., Princeton, Princeton University Press, 1946.zbMATHGoogle Scholar
  81. [81]
    H. Whitney,Complex Analytic Varieties, Reading, Addison-Wesley (1972).zbMATHGoogle Scholar

Copyright information

© Publications mathématiques de l’I.H.É.S 1980

Authors and Affiliations

  • Gerald W. Schwarz
    • 1
  1. 1.Department of MathematicsBrandeis UniversityWaltham

Personalised recommendations