Advertisement

La stratification naturelle des espaces de fonctions différentiables réelles et le théorème de la pseudo-isotopie

  • Jean Cerf
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographie

  1. [1]
    F. Bruhat, Sur les représentations induites des groupes de Lie,Bull. Soc. Math. France,84 (1956), 97–205.zbMATHMathSciNetGoogle Scholar
  2. [2]
    J. Cerf, Topologie de certains espaces de plongements,Bull. Soc. Math. France,89 (1961), 227–380.zbMATHMathSciNetGoogle Scholar
  3. [3]
    J. Cerf, Sur les difféomorphismes de la sphère de dimension trois,Lecture Notes in Math.,53, Springer, 1968.Google Scholar
  4. [4]
    J. Cerf,C. R. Congrès Int. Math., Moscou, 1966, 429–437.Google Scholar
  5. [5]
    J. Cerf etA. Gramain,Le théorème du h-cobordisme, Paris, Ecole Normale Supérieure, 1968 (multigraphié).Google Scholar
  6. [6]
    A. Chenciner etF. Laudenbach, Théorie de Smale à 1 paramètre dans le cas non simplement connexe,C. R. Acad. Sc. (Paris), série A,270 (1970), 176 et 307.zbMATHMathSciNetGoogle Scholar
  7. [7]
    J. F. P. Hudson, Concordance and isotopy,Bull. Amer. Math. Soc.,72 (1966), 534–535.zbMATHCrossRefMathSciNetGoogle Scholar
  8. [8]
    J. F. P. Hudson,Piecewise linear topology, Benjamin, 1969.Google Scholar
  9. [9]
    J. Mather, Stability of C mappings: I. The Division theorem,Ann. of Math.,87 (1968), 89–104.CrossRefMathSciNetGoogle Scholar
  10. [9]a
    , Stability of C mappings: II. Infinitesimal stability implies stability,Ann. of Math.,89 (1969), 254–291.CrossRefMathSciNetGoogle Scholar
  11. [9]b
    J. Mather, Stability of C mappings: III. Finitely determined map-germs,Publ. Math. I.H.E.S.,35 (1968).Google Scholar
  12. [9]c
    J. Mather, Stability of C mappings: IV. Classification of stable germs by R-algebras, à paraître auxPubl. Math. I.H.E.S. Google Scholar
  13. [10]
    J. Milnor,Lectures on the h-cobordism theorem, Princeton, Math. Notes (1965).Google Scholar
  14. [11]
    J. Milnor,Notes on algebraic K-theory, Princeton, 1968 (multigraphié).Google Scholar
  15. [12]
    C. Morlet,Plongements et automorphismes de variétés, Paris, Collège de France, 1969 (multigraphié).Google Scholar
  16. [13]
    S. P. Novikov, Homotopy properties of the group of diffeomorphisms of the sphere,Dokl. Akad. Nauk SSSR,148 (1963), 32–35.MathSciNetGoogle Scholar
  17. [14]
    Séminaire H. Cartan, 9e année (1956–1957), Quelques questions de topologie (multigraphié).Google Scholar
  18. [15]
    L. Siebenmann, Peripheral invariants for pseudo-isotopies,Notices Amer. Math. Soc.,14 (1967), 852.Google Scholar
  19. [16]
    L. Siebenmann, Torsion invariants for pseudo-isotopies on closed manifolds,Notices Amer. Math. Soc.,14 (1967), 942.Google Scholar
  20. [17]
    J.-C. Tougeron, Stabilité des applications différentiables (d’après J. Mather),Séminaire Bourbaki,336 (1967) (multigraphié).Google Scholar

Copyright information

© Publications mathématiques de l’I.H.É.S 1970

Authors and Affiliations

  • Jean Cerf

There are no affiliations available

Personalised recommendations