Advertisement

The irreducibility of the space of curves of given genus

  • P. Deligne
  • D. Mumford
Article

Keywords

Irreducible Component Abelian Variety Finite Type Double Point Stable Curve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. [Ab]
    S. Abhyankar, Resolution of singularities of arithmetical surfaces,Proc. Conf. on Arith. Alg. Geom. at Purdue. 1963.Google Scholar
  2. [A1]
    M. Artin, The implicit function theorem in algebraic geometry,Proc. Colloq. Alg. Geom., Bombay, 1968.Google Scholar
  3. [A2]
    M. Artin, Some numerical criteria for contractibility,Am. J. Math.,84 (1962), p. 485.zbMATHCrossRefGoogle Scholar
  4. [B]
    J. Benabou, Thèse, Paris, 1966.Google Scholar
  5. [E]
    F. Enriques andChisini,Teoria geometrica delle equazioni e delle funzioni algebriche, Bologna, 1918.Google Scholar
  6. [F]
    W. Fulton, Hurwitz schemes and irreducibility of moduli of algebraic curves,Ann. of Math. (forthcoming).Google Scholar
  7. [G]
    J. Giraud,Cohomologie non abélienne, University of Columbia.Google Scholar
  8. [Gr]
    A. Grothendieck, Techniques de descente et théorèmes d’existence en géométrie algébrique, IV,Sem. Bourbaki,221, 1960–1961.Google Scholar
  9. [H]
    R. Hartshorne, Residues and Duality,Springer Lecture Notes,20, 1966.Google Scholar
  10. [K]
    D. Knutson, Algebraic spaces,Thesis, M.I.T., 1968.Google Scholar
  11. [Li]
    J. Lipman, Rational singularities,Publ. Math. I.H.E.S., no 36 (1969).Google Scholar
  12. [L]
    M. Lichtenbaum, Curves over discrete valuation rings,Am. J. Math.,90 (1968), p. 380.zbMATHCrossRefGoogle Scholar
  13. [Ma]
    W. Manger, Die Klassen von topologischen Abbildungen einer geschlossenen Fläche auf sich,Math. Zeit.,44 (1939), p. 541.CrossRefGoogle Scholar
  14. [M1]
    D. Mumford,Geometric Invariant Theory, Springer-Verlag, 1965.Google Scholar
  15. [M2]
    D. Mumford,Notes on seminar on moduli problems, Supplementary mimeographed notes printed at A.M.S. Woods Hole Summer Institute, 1964.Google Scholar
  16. [M3]
    D. Mumford, Picard groups of moduli problems,Proc. Conf. on Arith. Alg. Geom. at Purdue, 1963.Google Scholar
  17. [N]
    A. Néron, Modèles minimaux des variétés abéliennes sur les corps locaux et globaux,Publ. Math. I.H.E.S., no 21.Google Scholar
  18. [R]
    M. Raynaud, Spécialisation du foncteur de Picard,Comptes rendus Acad. Sci.,264, p. 941 and p. 1001.Google Scholar
  19. [Š]
    I. Šafarevich, Lectures on minimal models,Tata Institute Lectures notes, Bombay, 1966.Google Scholar
  20. [Sc]
    M. Schlessinger,Thesis, Harvard.Google Scholar
  21. [S]
    J.-P. Serre,Rigidité du foncteur de Jacobi d’échelon n ≥ 3, app. à l’exposé 17 du séminaire Cartan 60/61.Google Scholar
  22. [Se]
    F. Severi andLöffler,Vorlesungen über algebraische Geometrie, Teubner, 1924.Google Scholar
  23. [W]
    A. Weil, Modules des surfaces de Riemann,Sém. Bourbaki, 168, 1957–58.Google Scholar

Copyright information

© Publications mathématiques de l’I.H.É.S 1969

Authors and Affiliations

  • P. Deligne
  • D. Mumford

There are no affiliations available

Personalised recommendations