Publications mathématiques de l'IHÉS

, Volume 34, Issue 1, pp 113–128 | Cite as

The representation ring of a compact Lie group

  • Graeme Segal


Vector Bundle Finite Group Conjugacy Class Prime Ideal Cyclic Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    M. F. Atiyah, Characters and cohomology of finite groups,Publ. Math. Inst. des Hautes Études Sci. (Paris),9 (1961), 23–64.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    M. F. Atiyah andR. Bott,Notes on the Lefschetz fixed-point theorem for elliptic complexes, mimeographed, Harvard, 1964.Google Scholar
  3. [3]
    M. F. Atiyah, R. Bott andA. Shapiro, Clifford modules,Topology,3 (Suppl. 1) (1964), 3–38.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    M. F. Atiyah andF. Hirzebruch, Vector bundles and homogeneous spaces,Differential geometry, Proc. of Symp. in Pure Math.,3 (1961), Amer. Math. Soc., 7–38.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    R. Bott, Homogeneous vector bundles,Ann. of Math.,66 (1957), 203–248.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    R. Bott, The index theorem for homogeneous differential operators,in S. S. Cairns (éd.),Differential and combinatorial topology, a symposium in honor of Marston Morse, Princeton, 1965.Google Scholar
  7. [7]
    N. Bourbaki,Algèbre commutative, chap. 5–6, Paris, Hermann, 1964.zbMATHGoogle Scholar
  8. [8]
    R. Brauer andJ. Tate, On the characters of finite groups,Ann. of Math.,62 (1955), 1–7.MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    C. Chevalley,Theory of Lie groups, Princeton, 1946.Google Scholar
  10. [10]
    Séminaire C. Chevalley 1,Classification des groupes de Lie algébriques, Paris, 1956–1958.Google Scholar
  11. [11]
    A. Grothendieck, Éléments de géométrie algébrique,Publ. Math. Inst. des Hautes Études Sci. (Paris),4 (1960).Google Scholar
  12. [12]
    G. D. Mostow, Cohomology of topological groups and solvmanifolds,Ann. of Math.,73 (1961), 20–48.MathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    Séminaire Sophus Lie, 1, Paris, 1954–1955.Google Scholar
  14. [14]
    P. Roquette, Arithmetische Untersuchung des Charakterringes einer endlichen Gruppe,Crelle’s J.,190 (1952), 148–168.MathSciNetzbMATHGoogle Scholar
  15. [15]
    J. de Siebenthal, Sur les groupes de Lie compacts non connexes,Comm. Math. Helv.,31 (1956), 41–89.MathSciNetCrossRefGoogle Scholar

Copyright information

© Publications mathématiques de l’I.H.É.S 1968

Authors and Affiliations

  • Graeme Segal

There are no affiliations available

Personalised recommendations