Computing

, Volume 60, Issue 2, pp 157–174

Anisotropic interpolation error estimates for isoparametric quadrilateral finite elements

  • Th. Apel
Article

Abstract

Anisotropic local interpolation error estimates are derived for quadrilateral and hexahedral Lagrangian finite elements with straight edges. These elements are allowed to have diameters with different asymptotic behaviour in different space directions. The case of affine elements (parallel-epipeds) with arbitrarily high degree of the shape functions is considered first. Then, a careful examination of the multi-linear map leads to estimates for certain classes of more general, isoparametric elements. As an application, the Galerkin finite element method for a reaction diffusion problem in a polygonal domain is considered. The boundary layers are resolved using anisotropic trapezoidal elements.

AMS Subject Classifications

65D05 65N30 65N50 

Key words

Anisotropic finite elements interpolation error estimate isoparametric map reaction diffusion problem 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Apel, Th., Dobrowolski, M.: Anisotropic interpolation with applications to the finite element method. Computing47, 277–293 (1992).CrossRefMathSciNetGoogle Scholar
  2. [2]
    Apel, Th., Lube, G.: Local inequalities for anisotropic finite elements and their application to convection-diffusion problems. Preprint SPC94 _ 26, TU Chemnitz-Zwickau, 1994.Google Scholar
  3. [3]
    Apel, Th., Lube, G.: Anisotropic mesh refinement in stabilized Galerkin methods. Number. Math.74, 261–282 (1996).MATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    Apel, Th., Lube, G.: Anisotropic mesh refinement for singularly perturbed reaction diffusion problems. Preprint SFB393/96-11, TU Chemnitz-Zwickau, 1996 (revised version will appear in Appl. Numer. Math.)Google Scholar
  5. [5]
    Babuška, I., Aziz, A. K.: On the angle condition in the finite element method. SIAM J. Numer. Anal.13, 214–226 (1976).CrossRefMathSciNetGoogle Scholar
  6. [6]
    Bernardi, C.: Optimal finite-element interpolation on curved domains. SIAM J. Numer. Anal.26, 1212–1240 (1989).MATHCrossRefMathSciNetGoogle Scholar
  7. [7]
    Ciarlet, P., Raviart, P.-A.: Interpolation theory over curved elements with applications to the finite element method. Comput. Meth. Appl. Mech. Eng.1, 217–249 (1972).CrossRefMathSciNetGoogle Scholar
  8. [8]
    Ciarlet, P. G.: The finite element method for elliptic problems. Amsterdam: North-Holland 1978.MATHGoogle Scholar
  9. [9]
    Girault, V., Raviart, P.-A.: Finite element methods for Navier-Stokes equations, Theory and algorithms. Springer Series in Computational Mathematics, Vol. 5. Berlin Heidelberg New York Tokyo: Springer 1986.MATHGoogle Scholar
  10. [10]
    Jamet, P.: Estimations d’erreur pour des éléments finis droits presque dégénérés. R.A.I.R.O. Anal. Numér.10, 43–61 (1976).MathSciNetGoogle Scholar
  11. [11]
    Kornhuber, R., Roitzsch, R.: On adaptive grid refinement in the presence of internal and boundary layers. IMPACT of Computing Sci. Eng.2, 40–72 (1990).CrossRefGoogle Scholar
  12. [12]
    Kunert, G.: Error estimation for anisotropic tetrahedral and triangular finite element meshes. Preprint SFB393/97-17, TU Chemnitz, 1997.Google Scholar
  13. [13]
    Křížek, M.: On semiregular families of triangulations and linear interpolation. Appl. Math.36, 223–232 (1991).MathSciNetGoogle Scholar
  14. [14]
    Křížek, M.: On the maximum angle condition for linear tetrahedral elements. SIAM J. Numer. Anal.29, 513–520 (1992).CrossRefMathSciNetGoogle Scholar
  15. [15]
    Lang, J.: An adaptive finite element method for convection-diffusion problems by interpolation techniques. Technical Report TR 91-4, ZIB Berlin, 1991.Google Scholar
  16. [16]
    Maden, N., Stynes, M.: Efficient generation of oriented meshes for solving convection diffusion problems. Technical report, University College Cork, Ireland, 1996.Google Scholar
  17. [17]
    Maischak, M.: hp-Methoden für Randintegralgleichungen bei 3D-Problemen, Theorie und Implementierung. PhD thesis, Universität Hannover, 1996.Google Scholar
  18. [18]
    Oganesyan, L. A., Rukhovets, L. A.: Variational-difference methods for the solution of elliptic equations. Izd. Akad. Nauk Armyanskoi SSR, Jerevan, 1979. (in Russian)Google Scholar
  19. [19]
    von Petersdorff, T.: Randwertprobleme der Elastizitätstheorie für Polyeder — Singularitäten und Approximationen mit Randelementmethoden. PhD thesis, TH Darmstadt, 1989.Google Scholar
  20. [20]
    Rachowicz, W.P.: An anisotropic h-type mesh refinement strategy. Comput. Methods Appl. Mech. Eng.109, 169–181 (1993).MATHCrossRefMathSciNetGoogle Scholar
  21. [21]
    Shishkin, G. I.: Mesh approximations of singularly perturbed elliptic and parabolic problems. Russ. Acad. Sci., Ekaterinburg, 1992. (in Russian)Google Scholar
  22. [22]
    Siebert, K.: An a posteriori error estimator for anisotropic refinement. Numer. Math.73, 373–398 (1996).MATHCrossRefMathSciNetGoogle Scholar
  23. [23]
    Synge, J. L.: The hypercircle in mathematical physics. Cambridge: Cambridge University Press 1957.MATHGoogle Scholar
  24. [24]
    Xenophontos, Chr.: The hp finite element method for singularly perturbed problems. PhD thesis, University of Maryland, 1996.Google Scholar
  25. [25]
    Ženíšek, A., Vanmaele, M.: The interpolation theorem for narrow quadrilateral isoparametric finite elements. Numer. Math.72, 123–141 (1995).CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 1998

Authors and Affiliations

  • Th. Apel
    • 1
  1. 1.Fakultät für MathematikTechnische Universität ChemnitzChemnitzGermany

Personalised recommendations