Advertisement

Infinitesimal computations in topology

  • Dennis Sullivan
Article

Keywords

Homotopy Type Cohomology Ring Differential Algebra Arithmetic Group Kaehler Manifold 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. [B]
    A. Borel, Sur la cohomologie des espaces fibrés principaux et des espaces homogènes de groupes de Lie compacts,Ann. of Math.,57 (1953), 115–207.CrossRefMathSciNetGoogle Scholar
  2. [BD]
    R. Body andR. Douglas, Homotopy types within a rational homotopy type,Topology,13 (1974), 209–214.zbMATHCrossRefMathSciNetGoogle Scholar
  3. [B-HC]
    A. Borel andHarish-Chandra, Arithmetic Subgroups of Algebraic Groups,Ann. of Math.,75 (1962), 485–535.CrossRefMathSciNetGoogle Scholar
  4. [Br]
    Wm.Browder,Surgery on simply connected manifolds, Springer Ergebnisse Series, 1971.Google Scholar
  5. [BS]
    R. Body andD. Sullivan, Zariski Dynamics of a Homotopy Type, to be submitted toTopology (preprint, UCSD La Jolla, California).Google Scholar
  6. [Bu]
    O. Burlet, Rational Homotopy of oriented Thom Spaces,Proceedings of the Advanced Study Institute on algebraic topology Aarhus (1970), vol.1, 20–22.MathSciNetGoogle Scholar
  7. [C]
    Elie Cartan, Sur les nombres de Betti des espaces de groupes clos,C. R. Acad. Sci., Paris,187 (1928), 196–198.Google Scholar
  8. [C]
    HenriCartan, La transgression dans un groupe de Lie et dans un espace fibré principal, Notions d’algèbre différentielle : application aux groupes de Lie et aux variétés où opère un groupe de Lie,Colloque de topologie (espaces fibrés), 58–71, Bruxelles, 1950.Google Scholar
  9. [D]
    G. De Rham, Intégrales multiples et Analysis Situs,C. R. Acad. Sci. Paris,188 (1929), 1651–1652.zbMATHGoogle Scholar
  10. [Gr]
    M. Gromov, Homotopical effects of Dilatation, submitted toJournal of Diff. Geom. Google Scholar
  11. [H]
    Guy Hirsch, Sur la structure multiplicative de l’anneau de cohomologie d’un espace fibré,C. R. Acad. Sci. Paris,230 (1950), 46–48.zbMATHMathSciNetGoogle Scholar
  12. [H-V]
    M. C. Heydemann andM. Vigué, Application de la théorie des polynômes de Hilbert-Samuel à l’étude de certaines algèbres différentielles,C. R. Acad. Sci. Paris,278 (1974), A, 1607–1610.zbMATHGoogle Scholar
  13. [K]
    Daniel M. Kan, A Combinatorial definition of homotopy groups,Annals of Math.,67 (1958), 282–312.CrossRefMathSciNetGoogle Scholar
  14. [KM]
    M. Kervaire andJ. Milnor, Groups of homotopy spheres I,Ann. of Math.,77 (1963), 504–557.CrossRefMathSciNetGoogle Scholar
  15. [KS]
    R. C. Kirby andL. C. Siebenmann, On the triangulation of manifolds and the Hauptvermutung,Bull. Amer. Math. Soc.,75 (1969), 742–749.zbMATHCrossRefMathSciNetGoogle Scholar
  16. [M1]
    J. Milnor, Geometric realization of a semi-simplicial complex,Ann. of Math.,65 (1957), 357–362.CrossRefMathSciNetGoogle Scholar
  17. [M2]
    J. Milnor, A procedure for killing the homotopy groups of a differentiable manifold,Proc. Sympos. Pure Math. III, Amer. Math. Soc., 1961, 39–55.Google Scholar
  18. [Mo]
    G. D. Mostow, Fully Reducible Subgroups of Algebraic Groups,Amer. J. Math.,78 (1956), 200–221.zbMATHCrossRefMathSciNetGoogle Scholar
  19. [N]
    S. P. Novikov, Homotopically Equivalent Smooth Manifolds,AMS Translations (2),48 (1965), 271–396.Google Scholar
  20. [P]
    HenriPoincaré, Analysis situs,Œuvres, t. VI, 193–288, alsoJournal de l’Ecole Polytechnique (2),1 (1895), 1–123.Google Scholar
  21. [Q]
    Daniel Quillen, Rational Homotopy Theory,Ann. of Math.,90 (1969), 205–295.CrossRefMathSciNetGoogle Scholar
  22. [Se1]
    Jean-Pierre Serre, Homologie singulière des espaces fibrés. Applications,Ann. of Math.,54 (1951), 425–505.CrossRefMathSciNetGoogle Scholar
  23. [Se2]
    Jean-Pierre Serre, Cohomologie galoisienne,Lecture Notes in Math., no 3, Berlin, Springer, 1973.zbMATHGoogle Scholar
  24. [St]
    R. E. Stong, Relations among characteristic Numbers I,Topology,4 (1965), 267–281; II,ibid.,5 (1966), 133–148.zbMATHCrossRefMathSciNetGoogle Scholar
  25. [Su1]
    DennisSullivan, Differential forms and the topology of manifolds,Manifolds-Tokyo (1973) (Proc. of the Intern. Conf. on Manifolds and related topics in Topology, Tokyo 1973) (ed. A. Hattori), U. of Tokyo Press, 1975, 37–49.Google Scholar
  26. [Su2]
    Dennis Sullivan, Genetics of Homotopy Theory and the Adams Conjecture,Annals of Math.,100 (1974), 1–79.CrossRefMathSciNetGoogle Scholar
  27. [Su3]
    DennisSullivan,Triangulating homotopy equivalences, Thesis, Princeton University (1966).Google Scholar
  28. [Su4]
    Dennis Sullivan, Geometric periodicity and the invariants of manifolds,Manifolds-Amsterdam (1970) (Proc. of the Nuffic Summer School on Manifolds, Amsterdam 1970) (ed. N. Kuiper),Lecture Notes in Math., no 197, Berlin, Springer, 1971.Google Scholar
  29. [Su5]
    Dennis Sullivan, On the intersection ring of compact three manifolds,Topology,14 (1975), 275–277.zbMATHCrossRefMathSciNetGoogle Scholar
  30. [Su6]
    DennisSullivan, Inside and Outside manifolds,Proc. Intern. Cong. of Math., Vancouver, 1974, 201–207.Google Scholar
  31. [Su7]
    Dennis Sullivan, Galois symmetry in manifold theory at the primes,Actes du Congrès intern. des Math., Nice (1970), vol. 2, 169–175, Paris, Gauthier-Villars, 1971.Google Scholar
  32. [T]
    RenéThom, Les classes caractéristiques de Pontryagin des variétés triangulées,Symposium international de topologia algebraica, 54–67, Mexico, 1958.Google Scholar
  33. [TC]
    RenéThom,Opérations en cohomologie réelle, Séminaire H. Cartan, 1954–55, Exposé 17.Google Scholar
  34. [VE]
    N. T. Van Est, A generalization of the Cartan Leray spectral sequence,Proc. Koninkl. Ned. Akad., série A, 1958, p. 399–413.Google Scholar
  35. [Wa]
    C. T. C.Wall,Surgery on compact manifolds, Academic Press, 1970.Google Scholar
  36. [We]
    A. Weil,Variétés Kähleriennes, Paris, Hermann, 1958.zbMATHGoogle Scholar
  37. [Wh1]
    J. H. C. Whitehead, Certain equations in the algebra of a semi-simple infinitesimal group,Math. works, vol.I, 291–308 (see alsoThe works of J. H. C. Whitehead by JohnMilnor,ibid., XXII–XXXIII).Google Scholar
  38. [Wh2]
    J. H. C. Whitehead, An expression of the Hopf invariant as an integral,Proc. Nat. Acad. Sci. U.S.A.,33 (1947), 117–123 =Math. Works, vol.I, 317–323.zbMATHCrossRefMathSciNetGoogle Scholar
  39. [W]
    H. Whitney,Geometric Integration Theory, Princeton University Press, 1957.Google Scholar
  40. [Wu]
    Wu Wen Tsün, Theory of I* Functor in Algebraic Topology,Scientia Sinica, Vol. XVIII and Vol. XII.Google Scholar
  41. [DS]
    P. Deligne andD. Sullivan, Fibrés vectoriels complexes à groupe structural discret,C. R. Acad. Sc. Paris,281 (1975), 1081–1083.zbMATHMathSciNetGoogle Scholar
  42. [DGMS]
    P. Deligne, P. Griffiths, J. Morgan, D. Sullivan, The real homotopy of Kaehler manifolds,Invent. Math.,29 (1975), 245–274.zbMATHCrossRefMathSciNetGoogle Scholar
  43. [SV]
    D. Sullivan, M. Vigué, The homology theory of the closed geodesic problem,Journal of Diff. Geom.,11 (1976), 633–644.zbMATHGoogle Scholar

Copyright information

© Publications mathématiques de l’I.H.É.S 1977

Authors and Affiliations

  • Dennis Sullivan

There are no affiliations available

Personalised recommendations