Modular curves and the eisenstein ideal

  • B. Mazur
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Artin (M.),Grothendieck topologies, Mimeographed notes, Harvard University, 1962.Google Scholar
  2. [2]
    Atkin (A. O. L.), Lehner (J.), Hecke operators on Γ0(m),Math. Ann.,185 (1970), 134–160.MATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    Bass (H.), On the ubiquity of Gorenstein rings,Math. Zeitschrift,82 (1963), 8–28.MATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    Brumer (A.), Kramer (K.),On the rank of elliptic curves, I (in preparation).Google Scholar
  5. [5]
    Cassels (J. W. S.), Fröhlich (A.) (eds.),Algebraic Number Theory, London-New York, Academic Press, 1967.MATHGoogle Scholar
  6. [6]
    Curtis (C. W.), Reiner (I.),Representation theory of finite groups and associative algebras, New York, Interscience, 1962.MATHGoogle Scholar
  7. [7]
    Deligne (P.), Formes modulaires et représentationsl-adiques. Séminaire Bourbaki 68/69, no. 355,Lecture Notes in Mathematics,179, Berlin-Heidelberg-New York, Springer, 1971, 136–172.Google Scholar
  8. [8]
    Deligne (P.), Mumford (D.), The irreducibility of the space of curves of given genus,Publications Mathématiques I.H.E.S.,36 (1969), 75–109.MATHMathSciNetGoogle Scholar
  9. [9]
    Deligne (P.), Rapoport (M.), Schémas de modules des courbes elliptiques. Vol. II of The Proceedings of the International Summer School on Modular Functions, Antwerp (1972),Lecture Notes in Mathematics,349, Berlin-Heidelberg-New York, Springer, 1973.Google Scholar
  10. [10]
    Deligne (P.), Serre (J.-P.), Formes modulaires de poids 1,Ann. Scient. Éc. Norm. Sup., 4e série, t.7 (1974), 507–530.MATHMathSciNetGoogle Scholar
  11. [11]
    Demazure (M.), Gabriel (P.),Groupes algébriques, t. I, Amsterdam, North-Holland Publishing Co., 1970.Google Scholar
  12. [12]
    Demjanenko (V. A.), Torsion of elliptic curves [in Russian],Izv. Akad. Nauk. CCCP,35 (1971), 280–307 [MR 44, 2755].MathSciNetGoogle Scholar
  13. [13]
    Drinfeld (G. I.), Elliptic modules [in Russian],Mat. Sbornik,94 (136) (1974), No. 4. Engl. Trans.:A.M.S., vol.23 (1976), 561–592.CrossRefMathSciNetGoogle Scholar
  14. [14]
    Fontaine (J.-M.), Groupes finis commutatifs sur les vecteurs de Witt,C. R. Acad. Sc. Paris, t.280 (1975), série A, 1423–1425.MATHMathSciNetGoogle Scholar
  15. [15]
    Grothendieck (A.), Le groupe de Brauer III: exemples et compléments (a continuation of Bourbaki exposés: 200, 297). Published inDix exposés sur la cohomologie des schémas, Amsterdam, North-Holland Publ. Co., 1968,Google Scholar
  16. [16]
    Hadano (T.), On the conductor of an elliptic curve with a rational point of order 2,Nagoya Math. J.,53 (1974), 199–210.MathSciNetGoogle Scholar
  17. [17]
    Hartshorne (R.), Residues and Duality,Lecture Notes in Mathematics,20, Berlin-Heidelberg-New York. Springer, 1966.MATHGoogle Scholar
  18. [18]
    Hartshorne (R.), On the De Rham cohomology of algebraic varieties,Publications Mathématiques I.H.E.S.,45 (1975), 1–99.Google Scholar
  19. [19]
    Hecke (E.),Mathematische Werke, 2nd edition, Göttingen, Vandenhoeck & Ruprecht, 1970.MATHGoogle Scholar
  20. [20]
    Herbrand (J.), Sur les classes des corps circulaires,Journal de Math. pures et appliquées, 9e série,11 (1932), 417–441.MATHGoogle Scholar
  21. [21]
    Imai (H.), A remark on the rational points of abelian varieties with values in cyclotomicZ p-extensions,Proc. Japan Acad.,51 (1975), 12–16.MATHMathSciNetGoogle Scholar
  22. [22]
    Iwasawa (K.),Lectures on p-adic L-functions, Princeton Princeton University Press and University of Tokyo Press, 1972.MATHGoogle Scholar
  23. [23]
    Iwasawa (K.), Onp-adic L-functions,Ann. Math.,89 (1969), 198–205.CrossRefMathSciNetGoogle Scholar
  24. [24]
    Katz (N.),p-adic properties of modular schemes and modular forms, vol. III of The Proceedings of the International Summer School on Modular Functions, Antwerp (1972),Lecture Notes in Mathematics,350, Berlin-Heidelberg-New York, Springer, 1973, 69–190.Google Scholar
  25. [25]
    Kiepert (L.), Ueber gewisse Vereinfachungen der Transformationsgleichungen in der Theorie der elliptischen Functionen,Math. Ann.,37 (1890), 368–398.CrossRefMathSciNetGoogle Scholar
  26. [26]
    Koike (M.), On the congruences between Eisenstein series and cusp forms (to appear).Google Scholar
  27. [27]
    Kubert (D.), Universal bounds on the torsion of elliptic curves,Proc. London Math. Soc. (3),33 (1976), 193–237.MATHCrossRefMathSciNetGoogle Scholar
  28. [28]
    Kubert (D.), Lang (S.), Units in the modular function field, I, II, III,Math. Ann.,218 (1975), 67–96, 175–189, 273–285.CrossRefMathSciNetGoogle Scholar
  29. [29]
    Lang (S.),Elliptic Functions, Addison Wesley, Reading, 1974.Google Scholar
  30. [30]
    Ligozat (G.), Fonctions L des courbes modulaires,Séminaire Delange-Pisot-Poitou, Jan. 1970. Thesis: Courbes modulaires de genre 1,Bull. Soc. math. France, mémoire 43, 1975.Google Scholar
  31. [31]
    Manin (Y.), A uniform bound forp-torsion in elliptic curves [in Russian],Izv. Akad. Nauk. CCCP,33 (1969), 459–465.MathSciNetGoogle Scholar
  32. [32]
    Manin (Y.), Parabolic points and zeta functions of modular forms [in Russian],Izv. Akad. Nauk. CCCP,36 (1972), 19–65.MATHMathSciNetGoogle Scholar
  33. [33]
    Mazur (B.), Notes on étale cohomology of number fields,Ann. Scient. Éc. Norm. Sup., 4e série, t.6 (1973), 521–556.MATHMathSciNetGoogle Scholar
  34. [34]
    Mazur (B.), Rational points on abelian varieties with values in towers of number fields,Inventiones Math.,18 (1972), 183–266.MATHCrossRefMathSciNetGoogle Scholar
  35. [35]
    Mazur (B.), Courbes elliptiques et symboles modulaires. Séminaire Bourbaki, No. 414,Lecture Notes in Mathematics, No.317, Berlin-Heidelberg-New York, Springer, 1973.Google Scholar
  36. [36]
    Mazur (B.),p-adic analytic number theory of elliptic curves and abelian varieties overQ,Proc. of International Congress of Mathematicians at Vancouver, 1974, vol. I, 369–377, Canadian Math. Soc. (1975).Google Scholar
  37. [37]
    Mazur (B.), Messing (W.), Universal extensions and one dimensional crystalline cohomology,Lecture Notes in Mathematics, No.370, Berlin-Heidelberg-New York, Springer, 1974.MATHGoogle Scholar
  38. [38]
    Mazur (B.), Serre (J.-P.), Points rationnels des courbes modulaires X0(N). Séminaire Bourbaki, No. 469,Lecture Notes in Mathematics, No.514, Berlin-Heidelberg-New York, Springer, 1976.Google Scholar
  39. [39]
    Mazur (B.), Swinnerton-Dyer (P.), Arithmetic of Weil curves,Inventiones math.,25 (1974), 1–61.MATHCrossRefMathSciNetGoogle Scholar
  40. [40]
    Mazur (B.), Tate (J.), Points of order 13 on elliptic curves,Inventiones math.,22 (1973), 41–49.MATHCrossRefMathSciNetGoogle Scholar
  41. [41]
    Mazur (B.), Vélu (J.), Courbes de Weil de conducteur 26,C. R. Acad. Sc. Paris, t.275 (1972), série A, 743–745.MATHGoogle Scholar
  42. [42]
    Miyawaka (I.), Elliptic curves of prime power conductor withQ-rational points of finite order,Osaka J Math.,10 (1973), 309–323.MathSciNetGoogle Scholar
  43. [43]
    Mumford (D.), Geometric invariant theory,Ergebnisse der Math.,34, Berlin-Heidelberg-New York, Springer, 1965.MATHGoogle Scholar
  44. [44]
    Mumford (D.),Curves and their jacobians, Ann Arbor, The University of Michigan Press, 1975.MATHGoogle Scholar
  45. [45]
    Néron (A.), Modèles minimaux des variétés abéliennes sur les corps locaux et globaux,Publ. Math. I.H.E.S.,21 (1964), 361–483 [MR 31, 3424].Google Scholar
  46. [46]
    Neumann (O.), Elliptische Kurven mit vorgeschriebenem Reduktionsverhalten, I, II,Math. Nachr.,49 (1971), 107–123;Math. Nachr.,56 (1973), 269–280.CrossRefMathSciNetGoogle Scholar
  47. [47]
    Oda (T.), The first De Rham cohomology group and Dieudonné modules,Ann. scient. Éc. Norm. Sup., 4e série, t.2 (1969), 63–135.MATHMathSciNetGoogle Scholar
  48. [48]
    Ogg (A.), Rational points on certain elliptic modular curves,Proc. Symp. Pure Math.,24 (1973), 221–231, A.M.S., Providence.MathSciNetGoogle Scholar
  49. [49]
    Ogg (A.), Diophantine equations and modular forms,Bull. A.M.S.,81 (1975), 14–27.MATHCrossRefMathSciNetGoogle Scholar
  50. [50]
    Ogg (A.), Hyperelliptic modular curves,Bull. Soc. Math. France,102 (1974), 449–462.MATHMathSciNetGoogle Scholar
  51. [51]
    Ogg (A.), Automorphismes des courbes modulaires,Séminaire Delange-Pisot-Poitou, déc. 1974 (mimeo. notes distributed by Secrétariat mathématique, 11, rue Pierre-et-Marie-Curie, 75231 Paris, Cedex 05).Google Scholar
  52. [52]
    Ohta (M.), On reductions and zeta functions of varieties obtained from Γ0(N) (to appear).Google Scholar
  53. [53]
    Oort (F.), Commutative group schemes,Lecture Notes in Mathematics, No.15, Berlin-Heidelberg-New York, Springer, 1966.MATHGoogle Scholar
  54. [54]
    Oort (F.), Tate (J.), Group schemes of prime order,Ann. Scient. Éc. Norm. Sup., série 4,3 (1970), 1–21.MATHMathSciNetGoogle Scholar
  55. [55]
    Raynaud (M.), Schémas en groupes de type (p,...,p),Bull. Soc. Math. France,102 (1974), 241–280.MATHMathSciNetGoogle Scholar
  56. [56]
    Raynaud (M.), Spécialisation du foncteur de Picard,Publ. Math. I.H.E.S.,38 (1970), 27–76.MATHMathSciNetGoogle Scholar
  57. [57]
    Raynaud (M.), Passage au quotient par une relation d’équivalence plate,Proc. of a Conference on Local Fields, NUFFICSummer School held at Driebergen in 1966, 133–157, Berlin-Heidelberg-New York, Springer, 1967.Google Scholar
  58. [58]
    Ribet (K.), Endomorphisms of semi-stable abelian varieties over number fields,Ann. of Math.,101 (1975), 555–562.CrossRefMathSciNetGoogle Scholar
  59. [59]
    Sen (S.), Lie algebras of Galois groups arising from Hodge-Tate modules,Ann. of Math.,97 (1973), 160–170.CrossRefMathSciNetGoogle Scholar
  60. [60]
    Serre (J.-P.),Corps locaux, Paris, Hermann, 1962.MATHGoogle Scholar
  61. [61]
    Serre (J.-P.), Formes modulaires et fonctions zêtap-adiques, vol. III of the Proceedings of the International Summer School on Modular Functions, Antwerp (1972),Lecture Notes in Mathematics,350, 191–268, Berlin-Heidelberg-New York, Springer, 1973.Google Scholar
  62. [62]
    Serre (J.-P.), Algèbre locale. Multiplicités,Lecture Notes in Mathematics, No.11 (3rd edition), Berlin-Heidelberg-New York, Springer, 1975.MATHGoogle Scholar
  63. [63]
    Serre (J.-P.),Abelian l-adic representations and elliptic curves, Lectures at McGill University, New York-Amsterdam, W. A. Benjamin Inc., 1968.MATHGoogle Scholar
  64. [64]
    Serre (J.-P.), Quelques propriétés des variétés abéliennes en caractéristiquep, Amer. J. Math.,80 (1958), 715–739.MATHCrossRefMathSciNetGoogle Scholar
  65. [65]
    Serre (J.-P.),p-torsion des courbes elliptiques (d’après Y. Manin). Séminaire Bourbaki, 69–70, No. 380,Lecture Notes in Mathematics, No.180, Berlin-Heidelberg-New York, Springer, 1971.Google Scholar
  66. [66]
    Serre (J.-P.), Congruences et formes modulaires (d’après H. P. F. Swinnerton-Dyer). Séminaire Bourbaki, 71–72, No. 416,Lecture Notes in Mathematics, No.317, Berlin-Heidelberg-New York, Springer, 1973.Google Scholar
  67. [67]
    Serre (J.-P.), Propriétés galoisiennes des points d’ordre fini des courbes elliptiques,Inventiones math.,15 (1972), 259–331.MATHCrossRefMathSciNetGoogle Scholar
  68. [68]
    Setzer (B.), Elliptic curves of prime conductor,J. Lond. Math. Soc. (2),10 (1975), 367–378.MATHCrossRefMathSciNetGoogle Scholar
  69. [69]
    Shimura (G.), Introduction to the arithmetic theory of automorphic functions,Publ. Math. Soc. Japan, No.11, Tokyo-Princeton, 1971.Google Scholar
  70. [70]
    Wada (H.), A table of Hecke operators,Proc. Japan Acad.,49 (1973), 380–384.MATHMathSciNetCrossRefGoogle Scholar
  71. [71]
    Yamauchi (M.), On the fields generated by certain points of finite order on Shimura’s elliptic curves,J. Math. Kyoto Univ.,14 (2) (1974), 243–255.MATHMathSciNetGoogle Scholar
  72. [72]
    Borevich (Z. I.), Shafarevich (I. R.),Number theory, London-New York, Academic Press, 1966.MATHGoogle Scholar
  73. [73]
    Parry (W. R.), A determination of the points which are rational overQ of three modular curves (unpublished).Google Scholar
  74. [74]
    Serre (J.-P.), Tate (J.), Good reduction of abelian varieties,Ann. of Math.,88 (1968), 492–517.CrossRefMathSciNetGoogle Scholar
  75. [75]
    Tate (J.), Algorithm for determining the type of a singular fiber in an elliptic pencil, vol. IV of The Proceedings of the International Summer School on Modular Functions, Antwerp (1972),Lecture Notes in Mathematics,476, Berlin-Heidelberg-New York, Springer, 1975.Google Scholar
  76. [SGA 3]
    Séminaire de Géométrie algébrique du Bois-Marie, 62–64. Directed byM. Demazure andA. Grothendieck,Lecture Notes in Mathematics, Nos,151, 152, 153, Berlin-Heidelberg-New York, Springer, 1970.Google Scholar
  77. [SGA 7]
    Séminaire de Géométrie algébrique du Bois-Marie, 67–69.P. Deligne andN. Katz,Lecture Notes in Mathematics, Nos.288, 340, Berlin-Heidelberg-New York, Springer, 1972, 1973.Google Scholar

Copyright information

© Publications mathématiques de l’I.H.É.S 1977

Authors and Affiliations

  • B. Mazur

There are no affiliations available

Personalised recommendations