Advertisement

Modular curves and the eisenstein ideal

  • B. Mazur
Article

Keywords

Modular Form Elliptic Curve Elliptic Curf Abelian Variety Group Scheme 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Artin (M.),Grothendieck topologies, Mimeographed notes, Harvard University, 1962.Google Scholar
  2. [2]
    Atkin (A. O. L.), Lehner (J.), Hecke operators on Γ0(m),Math. Ann.,185 (1970), 134–160.zbMATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    Bass (H.), On the ubiquity of Gorenstein rings,Math. Zeitschrift,82 (1963), 8–28.zbMATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    Brumer (A.), Kramer (K.),On the rank of elliptic curves, I (in preparation).Google Scholar
  5. [5]
    Cassels (J. W. S.), Fröhlich (A.) (eds.),Algebraic Number Theory, London-New York, Academic Press, 1967.zbMATHGoogle Scholar
  6. [6]
    Curtis (C. W.), Reiner (I.),Representation theory of finite groups and associative algebras, New York, Interscience, 1962.zbMATHGoogle Scholar
  7. [7]
    Deligne (P.), Formes modulaires et représentationsl-adiques. Séminaire Bourbaki 68/69, no. 355,Lecture Notes in Mathematics,179, Berlin-Heidelberg-New York, Springer, 1971, 136–172.Google Scholar
  8. [8]
    Deligne (P.), Mumford (D.), The irreducibility of the space of curves of given genus,Publications Mathématiques I.H.E.S.,36 (1969), 75–109.zbMATHMathSciNetGoogle Scholar
  9. [9]
    Deligne (P.), Rapoport (M.), Schémas de modules des courbes elliptiques. Vol. II of The Proceedings of the International Summer School on Modular Functions, Antwerp (1972),Lecture Notes in Mathematics,349, Berlin-Heidelberg-New York, Springer, 1973.Google Scholar
  10. [10]
    Deligne (P.), Serre (J.-P.), Formes modulaires de poids 1,Ann. Scient. Éc. Norm. Sup., 4e série, t.7 (1974), 507–530.zbMATHMathSciNetGoogle Scholar
  11. [11]
    Demazure (M.), Gabriel (P.),Groupes algébriques, t. I, Amsterdam, North-Holland Publishing Co., 1970.Google Scholar
  12. [12]
    Demjanenko (V. A.), Torsion of elliptic curves [in Russian],Izv. Akad. Nauk. CCCP,35 (1971), 280–307 [MR 44, 2755].MathSciNetGoogle Scholar
  13. [13]
    Drinfeld (G. I.), Elliptic modules [in Russian],Mat. Sbornik,94 (136) (1974), No. 4. Engl. Trans.:A.M.S., vol.23 (1976), 561–592.CrossRefMathSciNetGoogle Scholar
  14. [14]
    Fontaine (J.-M.), Groupes finis commutatifs sur les vecteurs de Witt,C. R. Acad. Sc. Paris, t.280 (1975), série A, 1423–1425.zbMATHMathSciNetGoogle Scholar
  15. [15]
    Grothendieck (A.), Le groupe de Brauer III: exemples et compléments (a continuation of Bourbaki exposés: 200, 297). Published inDix exposés sur la cohomologie des schémas, Amsterdam, North-Holland Publ. Co., 1968,Google Scholar
  16. [16]
    Hadano (T.), On the conductor of an elliptic curve with a rational point of order 2,Nagoya Math. J.,53 (1974), 199–210.MathSciNetGoogle Scholar
  17. [17]
    Hartshorne (R.), Residues and Duality,Lecture Notes in Mathematics,20, Berlin-Heidelberg-New York. Springer, 1966.zbMATHGoogle Scholar
  18. [18]
    Hartshorne (R.), On the De Rham cohomology of algebraic varieties,Publications Mathématiques I.H.E.S.,45 (1975), 1–99.Google Scholar
  19. [19]
    Hecke (E.),Mathematische Werke, 2nd edition, Göttingen, Vandenhoeck & Ruprecht, 1970.zbMATHGoogle Scholar
  20. [20]
    Herbrand (J.), Sur les classes des corps circulaires,Journal de Math. pures et appliquées, 9e série,11 (1932), 417–441.zbMATHGoogle Scholar
  21. [21]
    Imai (H.), A remark on the rational points of abelian varieties with values in cyclotomicZ p-extensions,Proc. Japan Acad.,51 (1975), 12–16.zbMATHMathSciNetGoogle Scholar
  22. [22]
    Iwasawa (K.),Lectures on p-adic L-functions, Princeton Princeton University Press and University of Tokyo Press, 1972.zbMATHGoogle Scholar
  23. [23]
    Iwasawa (K.), Onp-adic L-functions,Ann. Math.,89 (1969), 198–205.CrossRefMathSciNetGoogle Scholar
  24. [24]
    Katz (N.),p-adic properties of modular schemes and modular forms, vol. III of The Proceedings of the International Summer School on Modular Functions, Antwerp (1972),Lecture Notes in Mathematics,350, Berlin-Heidelberg-New York, Springer, 1973, 69–190.Google Scholar
  25. [25]
    Kiepert (L.), Ueber gewisse Vereinfachungen der Transformationsgleichungen in der Theorie der elliptischen Functionen,Math. Ann.,37 (1890), 368–398.CrossRefMathSciNetGoogle Scholar
  26. [26]
    Koike (M.), On the congruences between Eisenstein series and cusp forms (to appear).Google Scholar
  27. [27]
    Kubert (D.), Universal bounds on the torsion of elliptic curves,Proc. London Math. Soc. (3),33 (1976), 193–237.zbMATHCrossRefMathSciNetGoogle Scholar
  28. [28]
    Kubert (D.), Lang (S.), Units in the modular function field, I, II, III,Math. Ann.,218 (1975), 67–96, 175–189, 273–285.CrossRefMathSciNetGoogle Scholar
  29. [29]
    Lang (S.),Elliptic Functions, Addison Wesley, Reading, 1974.Google Scholar
  30. [30]
    Ligozat (G.), Fonctions L des courbes modulaires,Séminaire Delange-Pisot-Poitou, Jan. 1970. Thesis: Courbes modulaires de genre 1,Bull. Soc. math. France, mémoire 43, 1975.Google Scholar
  31. [31]
    Manin (Y.), A uniform bound forp-torsion in elliptic curves [in Russian],Izv. Akad. Nauk. CCCP,33 (1969), 459–465.MathSciNetGoogle Scholar
  32. [32]
    Manin (Y.), Parabolic points and zeta functions of modular forms [in Russian],Izv. Akad. Nauk. CCCP,36 (1972), 19–65.zbMATHMathSciNetGoogle Scholar
  33. [33]
    Mazur (B.), Notes on étale cohomology of number fields,Ann. Scient. Éc. Norm. Sup., 4e série, t.6 (1973), 521–556.zbMATHMathSciNetGoogle Scholar
  34. [34]
    Mazur (B.), Rational points on abelian varieties with values in towers of number fields,Inventiones Math.,18 (1972), 183–266.zbMATHCrossRefMathSciNetGoogle Scholar
  35. [35]
    Mazur (B.), Courbes elliptiques et symboles modulaires. Séminaire Bourbaki, No. 414,Lecture Notes in Mathematics, No.317, Berlin-Heidelberg-New York, Springer, 1973.Google Scholar
  36. [36]
    Mazur (B.),p-adic analytic number theory of elliptic curves and abelian varieties overQ,Proc. of International Congress of Mathematicians at Vancouver, 1974, vol. I, 369–377, Canadian Math. Soc. (1975).Google Scholar
  37. [37]
    Mazur (B.), Messing (W.), Universal extensions and one dimensional crystalline cohomology,Lecture Notes in Mathematics, No.370, Berlin-Heidelberg-New York, Springer, 1974.zbMATHGoogle Scholar
  38. [38]
    Mazur (B.), Serre (J.-P.), Points rationnels des courbes modulaires X0(N). Séminaire Bourbaki, No. 469,Lecture Notes in Mathematics, No.514, Berlin-Heidelberg-New York, Springer, 1976.Google Scholar
  39. [39]
    Mazur (B.), Swinnerton-Dyer (P.), Arithmetic of Weil curves,Inventiones math.,25 (1974), 1–61.zbMATHCrossRefMathSciNetGoogle Scholar
  40. [40]
    Mazur (B.), Tate (J.), Points of order 13 on elliptic curves,Inventiones math.,22 (1973), 41–49.zbMATHCrossRefMathSciNetGoogle Scholar
  41. [41]
    Mazur (B.), Vélu (J.), Courbes de Weil de conducteur 26,C. R. Acad. Sc. Paris, t.275 (1972), série A, 743–745.zbMATHGoogle Scholar
  42. [42]
    Miyawaka (I.), Elliptic curves of prime power conductor withQ-rational points of finite order,Osaka J Math.,10 (1973), 309–323.MathSciNetGoogle Scholar
  43. [43]
    Mumford (D.), Geometric invariant theory,Ergebnisse der Math.,34, Berlin-Heidelberg-New York, Springer, 1965.zbMATHGoogle Scholar
  44. [44]
    Mumford (D.),Curves and their jacobians, Ann Arbor, The University of Michigan Press, 1975.zbMATHGoogle Scholar
  45. [45]
    Néron (A.), Modèles minimaux des variétés abéliennes sur les corps locaux et globaux,Publ. Math. I.H.E.S.,21 (1964), 361–483 [MR 31, 3424].Google Scholar
  46. [46]
    Neumann (O.), Elliptische Kurven mit vorgeschriebenem Reduktionsverhalten, I, II,Math. Nachr.,49 (1971), 107–123;Math. Nachr.,56 (1973), 269–280.CrossRefMathSciNetGoogle Scholar
  47. [47]
    Oda (T.), The first De Rham cohomology group and Dieudonné modules,Ann. scient. Éc. Norm. Sup., 4e série, t.2 (1969), 63–135.zbMATHMathSciNetGoogle Scholar
  48. [48]
    Ogg (A.), Rational points on certain elliptic modular curves,Proc. Symp. Pure Math.,24 (1973), 221–231, A.M.S., Providence.MathSciNetGoogle Scholar
  49. [49]
    Ogg (A.), Diophantine equations and modular forms,Bull. A.M.S.,81 (1975), 14–27.zbMATHCrossRefMathSciNetGoogle Scholar
  50. [50]
    Ogg (A.), Hyperelliptic modular curves,Bull. Soc. Math. France,102 (1974), 449–462.zbMATHMathSciNetGoogle Scholar
  51. [51]
    Ogg (A.), Automorphismes des courbes modulaires,Séminaire Delange-Pisot-Poitou, déc. 1974 (mimeo. notes distributed by Secrétariat mathématique, 11, rue Pierre-et-Marie-Curie, 75231 Paris, Cedex 05).Google Scholar
  52. [52]
    Ohta (M.), On reductions and zeta functions of varieties obtained from Γ0(N) (to appear).Google Scholar
  53. [53]
    Oort (F.), Commutative group schemes,Lecture Notes in Mathematics, No.15, Berlin-Heidelberg-New York, Springer, 1966.zbMATHGoogle Scholar
  54. [54]
    Oort (F.), Tate (J.), Group schemes of prime order,Ann. Scient. Éc. Norm. Sup., série 4,3 (1970), 1–21.zbMATHMathSciNetGoogle Scholar
  55. [55]
    Raynaud (M.), Schémas en groupes de type (p,...,p),Bull. Soc. Math. France,102 (1974), 241–280.zbMATHMathSciNetGoogle Scholar
  56. [56]
    Raynaud (M.), Spécialisation du foncteur de Picard,Publ. Math. I.H.E.S.,38 (1970), 27–76.zbMATHMathSciNetGoogle Scholar
  57. [57]
    Raynaud (M.), Passage au quotient par une relation d’équivalence plate,Proc. of a Conference on Local Fields, NUFFICSummer School held at Driebergen in 1966, 133–157, Berlin-Heidelberg-New York, Springer, 1967.Google Scholar
  58. [58]
    Ribet (K.), Endomorphisms of semi-stable abelian varieties over number fields,Ann. of Math.,101 (1975), 555–562.CrossRefMathSciNetGoogle Scholar
  59. [59]
    Sen (S.), Lie algebras of Galois groups arising from Hodge-Tate modules,Ann. of Math.,97 (1973), 160–170.CrossRefMathSciNetGoogle Scholar
  60. [60]
    Serre (J.-P.),Corps locaux, Paris, Hermann, 1962.zbMATHGoogle Scholar
  61. [61]
    Serre (J.-P.), Formes modulaires et fonctions zêtap-adiques, vol. III of the Proceedings of the International Summer School on Modular Functions, Antwerp (1972),Lecture Notes in Mathematics,350, 191–268, Berlin-Heidelberg-New York, Springer, 1973.Google Scholar
  62. [62]
    Serre (J.-P.), Algèbre locale. Multiplicités,Lecture Notes in Mathematics, No.11 (3rd edition), Berlin-Heidelberg-New York, Springer, 1975.zbMATHGoogle Scholar
  63. [63]
    Serre (J.-P.),Abelian l-adic representations and elliptic curves, Lectures at McGill University, New York-Amsterdam, W. A. Benjamin Inc., 1968.zbMATHGoogle Scholar
  64. [64]
    Serre (J.-P.), Quelques propriétés des variétés abéliennes en caractéristiquep, Amer. J. Math.,80 (1958), 715–739.zbMATHCrossRefMathSciNetGoogle Scholar
  65. [65]
    Serre (J.-P.),p-torsion des courbes elliptiques (d’après Y. Manin). Séminaire Bourbaki, 69–70, No. 380,Lecture Notes in Mathematics, No.180, Berlin-Heidelberg-New York, Springer, 1971.Google Scholar
  66. [66]
    Serre (J.-P.), Congruences et formes modulaires (d’après H. P. F. Swinnerton-Dyer). Séminaire Bourbaki, 71–72, No. 416,Lecture Notes in Mathematics, No.317, Berlin-Heidelberg-New York, Springer, 1973.Google Scholar
  67. [67]
    Serre (J.-P.), Propriétés galoisiennes des points d’ordre fini des courbes elliptiques,Inventiones math.,15 (1972), 259–331.zbMATHCrossRefMathSciNetGoogle Scholar
  68. [68]
    Setzer (B.), Elliptic curves of prime conductor,J. Lond. Math. Soc. (2),10 (1975), 367–378.zbMATHCrossRefMathSciNetGoogle Scholar
  69. [69]
    Shimura (G.), Introduction to the arithmetic theory of automorphic functions,Publ. Math. Soc. Japan, No.11, Tokyo-Princeton, 1971.Google Scholar
  70. [70]
    Wada (H.), A table of Hecke operators,Proc. Japan Acad.,49 (1973), 380–384.zbMATHMathSciNetCrossRefGoogle Scholar
  71. [71]
    Yamauchi (M.), On the fields generated by certain points of finite order on Shimura’s elliptic curves,J. Math. Kyoto Univ.,14 (2) (1974), 243–255.zbMATHMathSciNetGoogle Scholar
  72. [72]
    Borevich (Z. I.), Shafarevich (I. R.),Number theory, London-New York, Academic Press, 1966.zbMATHGoogle Scholar
  73. [73]
    Parry (W. R.), A determination of the points which are rational overQ of three modular curves (unpublished).Google Scholar
  74. [74]
    Serre (J.-P.), Tate (J.), Good reduction of abelian varieties,Ann. of Math.,88 (1968), 492–517.CrossRefMathSciNetGoogle Scholar
  75. [75]
    Tate (J.), Algorithm for determining the type of a singular fiber in an elliptic pencil, vol. IV of The Proceedings of the International Summer School on Modular Functions, Antwerp (1972),Lecture Notes in Mathematics,476, Berlin-Heidelberg-New York, Springer, 1975.Google Scholar
  76. [SGA 3]
    Séminaire de Géométrie algébrique du Bois-Marie, 62–64. Directed byM. Demazure andA. Grothendieck,Lecture Notes in Mathematics, Nos,151, 152, 153, Berlin-Heidelberg-New York, Springer, 1970.Google Scholar
  77. [SGA 7]
    Séminaire de Géométrie algébrique du Bois-Marie, 67–69.P. Deligne andN. Katz,Lecture Notes in Mathematics, Nos.288, 340, Berlin-Heidelberg-New York, Springer, 1972, 1973.Google Scholar

Copyright information

© Publications mathématiques de l’I.H.É.S 1977

Authors and Affiliations

  • B. Mazur

There are no affiliations available

Personalised recommendations