Riemann-roch for singular varieties

  • Paul Baum
  • William Fulton
  • Robert Macpherson
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [A-H 1]
    M. F. Atiyah andF. Hirzebruch, Analytic cycles on complex manifolds,Topology,1, 1961, 25–45.CrossRefGoogle Scholar
  2. [A-H 2]
    M. F. Atiyah andF. Hirzebruch, The Riemann-Roch theorem for analytic embeddings,Topology,1, 1961, 151–166.CrossRefGoogle Scholar
  3. [App]
    W. Fulton, Rational equivalence on singular varieties, Appendix to this paper,Publ. Math. I.H.E.S., no 45 (1975), 147–167.Google Scholar
  4. [Baum]
    P. Baum, Riemann-Roch for singular varieties,A.M.S. Proceedings, Institute on Differential Geometry, Summer 1973, to appear.Google Scholar
  5. [B-F-M]
    P. Baum, W. Fulton andR. MacPherson,Riemann-Roch and topological K-theory, to appear.Google Scholar
  6. [B-S]
    A. Borel andJ.-P. Serre, Le théorème de Riemann-Roch,Bull. Soc. Math. France,86 (1958), 97–136.MATHGoogle Scholar
  7. [EGA]
    A. Grothendieck andJ. Dieudonné, Eléments de géométrie algébrique,Publ. Math. I.H.E.S., nos 4, 8, 11, 17, 20, 24, 28, 32, 1960–67.Google Scholar
  8. [F]
    W. Fulton, Riemann-Roch for singular varieties,Algebraic Geometry, Arcata 1974, Proc. of Symp. in Pure Math.,29, 449–457.Google Scholar
  9. [G]
    A. Grothendieck, La théorie des classes de Chern,Bull. Soc. Math. France,86 (1958), 137–154.MATHGoogle Scholar
  10. [M 1]
    R. MacPherson,Analytic vector-bundle maps, to appear.Google Scholar
  11. [M 2]
    R. MacPherson, Chern classes of singular varieties,Ann. of Math,100 (1974).Google Scholar
  12. [R]
    M. Raynaud, Flat modules in algebraic geometry,Algebraic Geometry, Oslo 1970, Proceedings of the 5th Nordic Summer-School in Mathematics, 255–275, Wolters-Noordhoff, Groningen, 1970.Google Scholar
  13. [S]
    J.-P. Serre, Algèbre locale; multiplicités,Springer Lecture Notes in Mathematics,11 (1965).Google Scholar
  14. [SGA 6]
    P. Berthelot, A. Grothendieck, L. Illusie et al., Théorie des intersections et théorème de Riemann-Roch,Springer Lecture Notes in Mathematics,225 (1971).Google Scholar

Copyright information

© Publications mathématiques de l’I.H.É.S 1975

Authors and Affiliations

  • Paul Baum
    • 1
  • William Fulton
    • 1
  • Robert Macpherson
    • 1
  1. 1.Brown UniversityProvidence

Personalised recommendations