Modèles minimaux des variétés abéliennes sur les corps locaux et globaux

  • André Néron
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographie

  1. [1]
    N. Bourbaki,Éléments de mathématique, liv. II(Algèbre), chap. VII, Actualités sc. et indust., no 1179, Paris, Hermann, 1952.Google Scholar
  2. [2]
    W. L. Chow, Projective embedding of homogeneous spaces,Lefschetz Conference Volume, Princeton University Press, 1957.Google Scholar
  3. [3]
    J. Dieudonné etA. Grothendieck, Éléments de géométrie algébrique, I,Publ. Math. Inst. Htes Ét. scientifiques, Paris,4, 1960.Google Scholar
  4. [4]
    M. Greenberg,Pro-algebraic structure on the rational subgroup of a p-adic abelian variety, Thesis, Princeton Univ., 1959.Google Scholar
  5. [5]
    M. Greenberg, Schemata over local rings,Ann. Math., 73 (1961), pp. 624–648.CrossRefGoogle Scholar
  6. [6]
    J. Igusa, Fibre systems of jacobian varieties,Amer. J. Math., vol. 78 (1956), pp. 171–199 et 745–760.CrossRefMathSciNetGoogle Scholar
  7. [7]
    K. Kodaira, On compact analytic surfaces,Princeton Math. Series, 24, pp. 121–135.Google Scholar
  8. [8]
    S. Koizumi, On specialization of the Albanese and Picard varieties,Mem. Coll. Sci. Univ. Kyoto, 32 (1960), pp. 371–382.MATHMathSciNetGoogle Scholar
  9. [9]
    S. Koizumi andG. Shimura, On specialization of abelian varieties,Scientific Papers of the College of General Education University of Tokyo, 9 (1959), pp. 187–211.MATHMathSciNetGoogle Scholar
  10. [10]
    S. Lang,Abelian varieties, Interscience Tracts, New York, 1959.Google Scholar
  11. [11]
    M. Lazard, Bemerkungen zur Theorie der bewerteten Körper und Ringe,Math. Nach, 12 (1954), pp. 67–73.MATHCrossRefMathSciNetGoogle Scholar
  12. [12]
    E. Lutz, Sur l’équationy 2=x 3−Ax−B dans les corps p-adiques,J. Crelle, 177 (1937), pp. 238–247.MATHGoogle Scholar
  13. [13]
    A. Mattuck, Abelian varieties overp-adic fields,Ann. Math., 62 (1955), pp. 92–119.CrossRefMathSciNetGoogle Scholar
  14. [14]
    A. Néron, Valeur asymptotique du nombre des points de hauteur bornée sur une courbe elliptique,International Congress of Math., Edinburgh, 1958.Google Scholar
  15. [15]
    M. Rosenlicht, Some basic theorems on algebraic groups,Amer. J. Math., 78, 1956, pp. 401–443.MATHCrossRefMathSciNetGoogle Scholar
  16. [16]
    P. Samuel, Algèbre locale,Mém. Sci. Math., no 123, Paris, Gauthier-Villars, 1953.Google Scholar
  17. [17]
    G. Shimura (cité [R]), Reduction of algebraic varieties with respect to a discrete valuation of the basic field,Amer. J. Math., 77 (1955), pp. 134–176.MATHCrossRefMathSciNetGoogle Scholar
  18. [18]
    J.-P. Serre,Groupes algébriques et corps de classes, Act. sc. et indust., no 1264, Paris, Hermann, 1959.MATHGoogle Scholar
  19. [19]
    J.-P. Serre, Groupes proalgébriques,Publ. Math. Inst. Htes Ét. scientifiques, Paris, 7, 1962.Google Scholar
  20. [20]
    J.-P. Serre,Corps locaux, Act. sc. et indust., no 1296, Paris, Hermann, 1962.MATHGoogle Scholar
  21. [21]
    A. Weil (cité [F]).Foundations of Algebraic Geometry, Amer. Math. Soc. Colloquium Publ, vol. 29, New York, 1946, 2e éd.MATHGoogle Scholar
  22. [22]
    A. Weil,Variétés abéliennes et courbes algébriques, Act. sc. et indust., no 1064, Paris, Hermann, 1948.MATHGoogle Scholar
  23. [23]
    A. Weil, Arithmetic on algebraic varieties,Ann. Math. (2), 53 (1951), pp. 412–444.CrossRefMathSciNetGoogle Scholar
  24. [24]
    A. Weil, The field of definition of a variety,Amer. J. Math., 78, no 3 (1956), pp. 509–524.MATHCrossRefMathSciNetGoogle Scholar
  25. [25]
    E. Witt, Zyklische Körper und Algebren der Charakteristikp vom Gradep n,J. Crelle, 176 (1936), pp. 126–140.MATHGoogle Scholar
  26. [26]
    O. Zariski, The problem of minimal models in the theory of algebraic surfaces,Amer. J. Math., 80, no 1, 1958), pp. 146–184.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Publications mathématiques de l’I.H.É.S 1964

Authors and Affiliations

  • André Néron

There are no affiliations available

Personalised recommendations