Mammalian Genome

, Volume 13, Issue 3, pp 169–172 | Cite as

Early embryonic lethality in mice deficient in the p110β catalytic subunit of PI 3-kinase

  • Lei Bi
  • Ichiro Okabe
  • David J. Bernard
  • Robert L. Nussbaum
Short Communications


Wortmannin Herpes Simplex Virus Thymidine Kinase Early Embryonic Lethality Genomic Southern Blot Embryonic Stem Cell Medium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arcaro A, Wymann MP (1993) Wortmannin is a potent phosphatidylinositol 3-kinase inhibitor: the role of phosphatidylinositol 3,4,5-triphosphate in neutrophil responses. Biochem J 296, 297–301PubMedGoogle Scholar
  2. Benistant C, Chapuis H, Roche S (2000) A specific function for phosphatidylinositol 3-kinase alpha (p85alpha-p 110alpha) in cell survival and for phosphatidylinositol 3-kinase beta (p85alpha-pll0beta) in de novo DNA synthesis of human colon carcinoma cells. Oncogene 19, 5083–5090PubMedCrossRefGoogle Scholar
  3. Bi L, Okabe I, Bernard DJ, Wynshaw-Boris A, Nussbaum RL (1999) Proliferative defect and embryonic lethality in mice homozygous for a deletion in the p110alpha subunit of phosphoinositide 3-kinase. J Biol Chem 274, 10963–10968PubMedCrossRefGoogle Scholar
  4. Christoforidis S, Miaczynska M, Ashman K, Wilm M, Zhao L et al. (1999) Phosphatidylinositol-3-OH kinases are Rab5 effectors. Nat Cell Biol 1, 249–252PubMedCrossRefGoogle Scholar
  5. Deng C, Wynshaw-Boris A, Zhou F, Kuo A, Leder P (1996) Fibroblast growth factor receptor 3 is a negative regulator of bone growth. Cell 84, 911–921PubMedCrossRefGoogle Scholar
  6. Fruman DA, Meyers RE, Cantley LC (1998) Phosphoinositide kinases. Annu Rev Biochem 67, 481–507PubMedCrossRefGoogle Scholar
  7. Fruman DA, Snapper SB, Yballe CM, Davidson L, Yu JY et al. (1999) Impaired B cell development and proliferation in absence of phosphoinositide 3-kinase p85alpha. Science 283, 393–397PubMedCrossRefGoogle Scholar
  8. Gaillard C, Strauss F (1990) Ethanol precipitation of DNA with linear polyacrylamide as carrier. Nucleic Acids Res 18, 378PubMedCrossRefGoogle Scholar
  9. Hill K, Welti S, Yu J, Murray JT, Yip SC et al. (2000) Specific requirement for the p85-pll0alpha phosphatidylinositol 3-kinase during epidermal growth factor-stimulated actin nucleation in breast cancer cells. J Biol Chem 275, 3741–3744PubMedCrossRefGoogle Scholar
  10. Hooshmand-Rad R, Hajkova L, Klint P, Karlsson R, Vanhaesebroeck B et al. (2000) The PI 3-kinase isoforms p110(alpha) and p110(beta) have differential roles in PDGF- and insulin-mediated signaling. J Cell Sci 113 Pt 2, 207–214PubMedGoogle Scholar
  11. Hu P, Mondino A, Skolnik EY, Schlessinger J (1993) Cloning of a novel, ubiquitously expressed human phosphatidylinositol 3-kinase and identification of its binding site on p85. Mol Cell Biol 13, 7677–7688PubMedGoogle Scholar
  12. Katada T, Kurosu H, Okada T, Suzuki T, Tsujimoto N et al. (1999) Synergistic activation of a family of phosphoinositide 3-kinase via G-protein coupled and tyrosine kinase-related receptors. Chem Phys Lipids 98, 79–86PubMedCrossRefGoogle Scholar
  13. Oakey RJ, Matteson PG, Litwin S, Tilghman SM, Nussbaum RL (1995) Nondisjunction rates and abnormal development in a mouse cross between heterozygotes carrying a (7, 18) robertsonian translocation. Genetics 141, 667–674PubMedGoogle Scholar
  14. Roche S, Downward J, Raynal P, Courtneidge SA (1998) A function for phosphatidylinositol 3-kinase beta (p85alpha-pll0beta) in fibroblasts during mitogenesis: requirement for insulin- and lysophosphatidic acid-mediated signal transduction. Mol Cell Biol 18, 7119–7129PubMedGoogle Scholar
  15. Siddhanta U, McIlroy J, Shah A, Zhang Y, Backer JM (1998) Distinct roles for the p110alpha and hVPS34 phosphatidylinositol 3−kinases in vesicular trafficking, regulation of the actin cytoskeleton, and mitogenesis. J Cell Biol 143, 1647–1659PubMedCrossRefGoogle Scholar
  16. Suzuki H, Terauchi Y, Fujiwara M, Aizawa S, Yazaki Y et al. (1999) Xid-like immunodeficiency in mice with disruption of the p85alpha subunit of phosphoinositide 3-kinase. Science 283, 390–392PubMedCrossRefGoogle Scholar
  17. Tybulewicz VL, Tremblay ML, LaMarca ME, Willemsen R, Stubblefield BK et al. (1992) Animal model of Gaucher’s disease from targeted disruption of the mouse glucocerebrosidase gene. Nature 357, 407–410PubMedCrossRefGoogle Scholar
  18. Vanhaesebroeck B, Welham MJ, Kotani K, Stein R, Warne PH et al. (1997) P110delta, a novel phosphoinositide 3-kinase in leukocytes. Proc Natl Acad Sci USA 94, 4330–4335PubMedCrossRefGoogle Scholar
  19. Vanhaesebroeck B, Jones GE, Allen WE, Zicha D, Hooshmand-Rad R et al. (1999) Distinct PI(3)Ks mediate mitogenic signalling and cell migration in macrophages. Nat Cell Biol 1, 69–71PubMedCrossRefGoogle Scholar
  20. Vanhaesebroeck B, Leevers SJ, Ahmadi K, Timms J, Katso R et al. (2001) Synthesis and function of 3-phosphorylated inositol lipids. Annu Rev Biochem 70, 535–602PubMedCrossRefGoogle Scholar
  21. Vlahos CJ, Matter WF, Hui KT, Brown RF (1994) A specific inhibitor of phosphatidylinositol 3-kinase, 2-(4-morpholinyl)-8-phenyl-4H-l-benzopyran-4-one (LY294002). J Biol Chem 269, 5241–5248PubMedGoogle Scholar
  22. Wymann MP, Pirola L (1998) Structure and function of phosphoinositide 3-kinases. Biochim Biophys Acta 1436, 127–150PubMedGoogle Scholar

Copyright information

© Springer-Verlag New York Inc 2002

Authors and Affiliations

  • Lei Bi
    • 1
  • Ichiro Okabe
    • 1
  • David J. Bernard
    • 1
  • Robert L. Nussbaum
    • 1
  1. 1.Genetic Diseases Research BranchNational Human Genome Research Institute, National Institutes of HealthBethesdaUSA

Personalised recommendations