• F. James
Reviews, Tables, And Plots Mathematical Tools or Statistics, Monte Carlo, Group Theory


Unbiased Estimator Nuisance Parameter Physical Region Physical Boundary Exact Coverage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. Efron, Am. Stat.40, 11 (1986).CrossRefGoogle Scholar
  2. 2.
    R.D. Cousins, Am. J. Phys.63, 398 (1995).CrossRefADSGoogle Scholar
  3. 3.
    A. Stuart and A. K. Ord,Kendall's Advanced Theory of Statistics, Vol. 2Classical Inference and Relationship 5th Ed., (Oxford Univ. Press, 1991), and earlier editions by Kendall and Stuart. The likelihood-ratio ordering principle is described at the beginning of Ch. 23. Chapter 31 compares different schools of statistical inference.Google Scholar
  4. 4.
    W.T. Eadie, D. Drijard, F.E. James, M. Roos, and B. Sadoulet,Statistical Methods in Experimental Physics (North Holland, Amsterdam and London, 1971).zbMATHGoogle Scholar
  5. 5.
    Workshop on Confidence Limits, CERN, 17–18 Jan. 2000, See also the later Fermilab workshop linked to the CERN web page.Google Scholar
  6. 6.
    H. Cramer,Mathematical Methods of Statistics, Princeton Univ. Press, New Jersey (1958).Google Scholar
  7. 7.
    B.P. Roe,Probability and Statistics in Experimental Physics, (Springer-Verlag, New York, 208 pp., 1992).Google Scholar
  8. 8.
    G. Cowan,Statistical Data Analysis (Oxford University Press, Oxford, 1998).Google Scholar
  9. 9.
    W.H. Presset al., Numerical Recipes (Cambridge University Press, New York, 1986).Google Scholar
  10. 10.
    F. James and M. Roos, “MINUIT, Function Minimization and Error Analysis,” CERN D506 (Long Writeup). Available from the CERN Program Library Office, CERN-IT Division, CERN, CH-1211, Geneva 21, Switzerland.Google Scholar
  11. 11.
    For a review, see S. Baker and R. Cousins, Nucl. Instrum. Methods221, 437 (1984).CrossRefGoogle Scholar
  12. 12.
    J. Neyman, Phil. Trans. Royal Soc. London, Series A,236, 333 (1937), reprinted inA Selection of Early Statistical Papers on J. Neyman (University of California Press, Berkeley, 1967).CrossRefADSGoogle Scholar
  13. 13.
    G.J. Feldman and R.D. Cousins, Phys. Rev.D57, 3873 (1998). This paper does not specify what to do if the ordering principle gives equal rank to some values ofx. Eq. 23.6 of Ref. 3 gives the rule: all such points are included in the acceptance region (the domainD(∈)). Some authors have assumed the contrary, and shown that one can then obtain null intervals..ADSGoogle Scholar
  14. 14.
    B.P. Roe and M.B. Woodroofe, Phys. Rev.D60, 053009 (1999).ADSGoogle Scholar

Copyright information

© Springer-Verlag 2000

Authors and Affiliations

  • F. James

There are no affiliations available

Personalised recommendations