Advertisement

Particle detectors

Reviews, Tables, And Plots Experimental Methods and Colliders
  • 108 Downloads

Keywords

Plastic Scintillator Will Emit Attenuation Length Optical Photon Pulse Shape Discrimination 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References:

  1. 1.
    Experimental Techniques in High Energy Physics, T. Ferbel (ed.) (Addison-Wesley, Menlo Park, CA, 1987).Google Scholar
  2. 2.
    J.B. Birks, The Theory and Practice of Scintillation Counting (Pergamon, London, 1964).Google Scholar
  3. 3.
    D. Clark, Nucl. Instrum. Methods117, 295 (1974).ADSCrossRefGoogle Scholar
  4. 4.
    J.B. Birks, Proc. Phys. Soc.A64, 874 (1951).ADSGoogle Scholar
  5. 5.
    B. Bengston and M. Moszynski, Nucl. Instrum. Methods117, 227 (1974); J. Bialkowskiet al., Nucl. Instrum. Methods117, 221 (1974).ADSCrossRefGoogle Scholar
  6. 6.
    Proceedings of the Symposium on Detector Research and Development for the Superconducting Supercollider, eds. T. Dombeck, V. Kelly and G.P. Yost (World Scientific, Singapor, 1991).Google Scholar
  7. 7.
    I.B. Berlman, Handbook of Fluorescence Spectra of Aromatic Molecules, 2nd edition (Academic Press, New York, 1971).Google Scholar
  8. 8.
    C. Zorn in Instrumentation in High Energy Physics, ed. F. Sauli, (1992, World Scientific, Singapore) pp. 218–279.CrossRefGoogle Scholar
  9. 9.
    T. Foerster, Ann. Phys.2, 55 (1948).zbMATHCrossRefGoogle Scholar
  10. 10.
    J.B. Birks, The Theory and Practice of Scintillation Counting, Chapter 6, (Pergamon, London, 1964); J.M. Fluornoy, Conference on Radiation-Tolerant Plastic Scintillators and Detectors, K.F. Johnson and R.L. Clough editors, Rad. Phys. and Chem.,41 389 (1993).Google Scholar
  11. 11.
    D. Horstman and U. Holm, ibid 395.Google Scholar
  12. 12.
    D. Blomkeret al., Nucl. Instrum. MethodsA311, 505 (1992); J. Mainuschet al., Nucl. Instrum. MethodsA312, 451 (1992).ADSGoogle Scholar
  13. 13.
    Conference on Radiation-Tolerant Plastic Scintillatora and Detectors, K.F. Johnson and R.L. Clough editors, Rad. Phys. and Chem.,41 (1993).Google Scholar
  14. 14.
    R.K. Swank, Ann. Rev. Nucl. Sci.4, 137 (1954); G.T. Wright, Proc. Phys. Soc.B68, 929 (1955).CrossRefGoogle Scholar
  15. 15.
    M. Lavalet al., Nucl. Instrum. Methods206, 169 (1983).CrossRefGoogle Scholar
  16. 16.
    M. Moszynskiet al., Nucl. Instrum. MethodsA226, 534 (1984).ADSGoogle Scholar
  17. 17.
    E. Blucheret al., Nucl. Instrum. MethodsA249, 201 (1986).ADSGoogle Scholar
  18. 18.
    C. Bebek, Nucl. Instrum. MethodsA265, 258 (1988).ADSGoogle Scholar
  19. 19.
    S. Kubotaet al., Nucl. Instrum. MethodsA268, 275 (1988).ADSGoogle Scholar
  20. 20.
    B. Adevaet al., Nucl. Instrum. MethodsA289, 35 (1990).ADSGoogle Scholar
  21. 21.
    I. Holl, E. Lorentz, G Mageras, IEEE Trans. Nucl. Sci.35, 105 (1988).ADSCrossRefGoogle Scholar
  22. 22.
    J. Litt and R. Meunier, Ann. Rev. Nucl. Sci.23, 1 (1973).ADSCrossRefGoogle Scholar
  23. 23.
    D. Bartlettet al., Nucl. Instrum. MethodsA260, 55 (1987).ADSGoogle Scholar
  24. 24.
    P. Duteilet al., Review of Scientific Instruments35, 1523 (1964).ADSCrossRefGoogle Scholar
  25. 25.
    M. Cavalli-Sforzaet al., Construction and Testing of the SLC Cerenkov Ring Imaging Detector, IEEE37, N3:1132 (1990).MathSciNetGoogle Scholar
  26. 26.
    E.G. Anassontziset al., Recent Results from the DELPHI Barrel Ring Imaging Cherenkov Counter, IEEE38, N2:417 (1991).Google Scholar
  27. 27.
    R.T. Rewicket al., Anal Chem 60, 2095 (1989).CrossRefGoogle Scholar
  28. 28.
    B. Dolgoshein, “Transition Radiation Detectors,” Nucl. Instrum. MethodsA326, 434 (1993).ADSGoogle Scholar
  29. 29.
    X. Artruet al., Phys. Rev.D12, 1289 (1975).ADSGoogle Scholar
  30. 30.
    G.M. Garibianet al., Nucl. Instrum. Methods125, 133 (1975).ADSCrossRefGoogle Scholar
  31. 31.
    RD6 Collaboration, CERN/DRDC 90-38 (1990); CERN/DRDC 91-47 (1991); CERN/DRDC 93-46 (1993).Google Scholar
  32. 32.
    ATLAS Collaboration, ATLAS Inner Detector Technical Design Report, Volume 2, ATLAS TDR 5, CERN/LHCC/97-16 (30 April 1997).Google Scholar
  33. 33.
    B. Dolgoshein, Nucl. Instrum. Methods252, 137 (1986).ADSCrossRefGoogle Scholar
  34. 34.
    C.W. Fabjanet al., Nucl. Instrum. Methods185, 119 (1981).ADSCrossRefGoogle Scholar
  35. 35.
    J. Cobbet al., Nucl. Instrum. Methods140, 413 (1977).ADSCrossRefGoogle Scholar
  36. 36.
    A. Büngeneret al., Nucl. Instrum. Methods214, 261 (1983).CrossRefGoogle Scholar
  37. 37.
    R.D. Appuhnet al., Nucl. Instrum. Methods263, 309 (1988).ADSCrossRefGoogle Scholar
  38. 38.
    Y. Wataseet al., Nucl. Instrum. Methods248, 379 (1986).ADSCrossRefGoogle Scholar
  39. 39.
    R. Ansariet al., Nucl. Instrum. Methods263, 51 (1988).ADSCrossRefGoogle Scholar
  40. 40.
    H.J. Buttet al., Nucl. Instrum. Methods252, 483 (1986).ADSCrossRefGoogle Scholar
  41. 41.
    J.F. Detoeufet al., Nucl. Instrum. Methods265, 157 (1988).ADSCrossRefGoogle Scholar
  42. 42.
    M. Holderet al., Nucl. Instrum. Methods263, 319 (1988).ADSCrossRefGoogle Scholar
  43. 43.
    H. Weidkamp, DiplomArbeit, Rhein-Westf. Tech. Hochschule Aachen (1984).Google Scholar
  44. 44.
    H. Grassieret al., Proc. Vienna Wire Chamber Conference (1989).Google Scholar
  45. 45.
    T. Akessonet al., CERN Preprint, CERN-PPE/97-161 (1997), to be published in Nucl. Instr. and Meth.Google Scholar
  46. 46.
    F.F. Rieke and W. Prepejchal, Phys. Rev.A6, 1507 (1972).ADSGoogle Scholar
  47. 47.
    L.G. Christophorou, “Atomic and molecular radiation physics” (Wiley, London 1991).Google Scholar
  48. 48.
    G. Charpaket al., Nucl. Instrum. Methods62, 262 (1968).ADSCrossRefGoogle Scholar
  49. 49.
    R. Veenhof, GARFIELD program: simulation of gaseous detectors, version 6.32, CERN Program Library Pool W999 (W5050).Google Scholar
  50. 50.
    As representative examples see: B. Adevaet al., Nucl. Instrum. MethodsA287, 35 (1990).ADSGoogle Scholar
  51. 51.
    As representative example see: A. Alexanderet al., Nucl. Instrum. MethodsA276, 42 (1989).ADSGoogle Scholar
  52. 52.
    As representative examples see: F. Bedeschiet al., Nucl. Instrum. MethodsA268, 50 (1988);Opal Collaboration: Nucl. Instrum. MethodsA305, 275 (1991).ADSGoogle Scholar
  53. 53.
    A. Oed, Nucl. Instrum. MethodsA263, 351 (1988).ADSGoogle Scholar
  54. 54.
    W. Blum and L. Rolandi,Particle Detection with Drift Chambers, Springer-Verlag (1994).Google Scholar
  55. 55.
    A. Peisert and F. Sauli, CERN-84-08 (Jul 1984).Google Scholar
  56. 56.
    R. Bellazzini and A. M. Spezziga, Rivista del Nuovo Cimento17, 1 (1994).ADSCrossRefGoogle Scholar
  57. 57.
    D.R. Nygren and J.N. Marx, “The Time Projection Chamber”, Phys. Today31, 46 (1978).Google Scholar
  58. 58.
    W.R. Nelson, H. Hirayama and D.W.O. Rogers, “The EGS4 Code System,” SLAC-265, Stanford Linear Accelerator Center (Dec. 1985).Google Scholar
  59. 59.
    D. Hitlinet al., Nucl. Instrum. Methods137, 225 (1976). See also W. J. Willis and V. Radeka, Nucl. Instrum. Methods120, 221 (1974), for a more detailed discussion.ADSCrossRefGoogle Scholar
  60. 60.
    E. Bloom and C. Peck, Ann. Rev. Nucl. and Part. Sci.33, 143 (1983).ADSCrossRefGoogle Scholar
  61. 61.
    M.A. Akrawyet al., Nucl. Instrum. MethodsA290, 76 (1990).ADSGoogle Scholar
  62. 62.
    H. Burkhardtet al., Nucl. Instrum. MethodsA268, 116 (1988).ADSGoogle Scholar
  63. 63.
    W. Hoffmanet al., Nucl. Instrum. Methods163, 77 (1979).ADSCrossRefGoogle Scholar
  64. 64.
    M.A. Schneeganset al., Nucl. Instrum. Methods193, 445 (1982).ADSCrossRefGoogle Scholar
  65. 65.
    C. Fabjan and R. Wigmans, Rept. Prog. Phys.52, 1519 (1989).ADSCrossRefGoogle Scholar
  66. 66.
    J.V. Allabyet al., Nucl. Instrum. MethodsA281, 291 (1989).ADSGoogle Scholar
  67. 67.
    R. Wigmans, Nucl. Instrum. MethodsA259, 389 (1987).ADSGoogle Scholar
  68. 68.
    R. Wigmans, Nucl. Instrum. MethodsA265, 273 (1988).ADSGoogle Scholar
  69. 69.
    D. Bintinger, inProceedings of the Workshop on Calorimetry for the Supercollider, Tuscaloosa, AL, March 13–17, 1989, edited by R. Donaldson and M.G.D. Gilchriese (World Scientific, Teaneck, NJ, 1989), p. 91; R.K. Bock, T. Hansl-Kozanecka, and T.P. Shah, Nucl. Instrum. Methods186, 533 (1981).Google Scholar
  70. 70.
    T.A. Gabriel, D.E. Groom, P.K. Job, N.V. Mokhov, and G.R. Stevenson, Nucl. Instrum. MethodsA338, 336 (1994).ADSGoogle Scholar
  71. 71.
    T. Akessonet al., Nucl. Instrum. MethodsA262, 243 (1987).ADSGoogle Scholar
  72. 72.
    E. Bernardiet al., Nucl. Instrum. MethodsA262, 229 (1987).ADSGoogle Scholar
  73. 73.
    E. Shibamuraet al., Nucl. Instrum. Methods131, 249 (1975).ADSCrossRefGoogle Scholar
  74. 74.
    T.G. Ryan and G.R. Freeman, J. Chem. Phys.68, 5144 (1978).ADSCrossRefGoogle Scholar
  75. 75.
    W.F. Schmidt, “Electron Migration in Liquids and Gases,” HMI B156 (1974).Google Scholar
  76. 76.
    A.O. Allen, “Drift Mobilities and Conduction Band Energies of Excess Electrons in Dielectric Liquids,” NSRDS-NBS-58 (1976).Google Scholar
  77. 77.
    G. Lindströmet al., Nucl. Instrum. MethodsA426, 1 (1999).ADSGoogle Scholar
  78. 78.
    V. Radeka, IEEE Trans. Nucl. Sci.NS-15/3, 455 (1968); V. Radeka, IEEE Trans. Nucl. Sci.NS-21, 51 (1974).ADSCrossRefGoogle Scholar
  79. 79.
    F.S. Goulding, Nucl. Instrum. Methods100, 493 (1972); F.S. Goulding and D.A. Landis, IEEE Trans. Nucl. Sci.NS-29, 1125 (1982).ADSCrossRefGoogle Scholar
  80. 80.
    H. Spieler, IEEE Trans. Nucl. Sci.NS-29, 1142 (1982).ADSCrossRefGoogle Scholar
  81. 81.
    M.A. Green, R.A. Byrns, and S.J. St. Lorant, “Estimating the cost of superconducting magnets and the refrigerators needed to keep them cold,” inAdvances in Cryogenic Engineering, Vol. 37, Plenum Press, New York (1992).Google Scholar
  82. 82.
    Vector Fields, Inc., 1700 N. Farnsworth Ave., Aurora, IL.Google Scholar
  83. 83.
    Swanson Analysis Systems, Inc., P.O. Box 65, Johnson Rd., Houston, PA.Google Scholar
  84. 84.
    CGA-341-1987, “Standard for insulated cargo tank specification for cryogenic liquids,” Compressed Gas Association, Inc., Arlington, VA (1987).Google Scholar
  85. 85.
    R.L. Gluckstern, Nucl. Instrum. Methods24, 381 (1963).ADSCrossRefGoogle Scholar
  86. 86.
    V. Karimäki, Nucl. Instrum. MethodsA410, 284 (1998).Google Scholar

Copyright information

© Springer-Verlag 2000

Personalised recommendations