Advertisement

Passage of particles through matter

  • D. E. Groom
  • S. R. Klein
Reviews, Tables and Plots Experimental Methods and Colliders

Keywords

Energy Loss Pair Production Critical Energy Radiation Length Energy Loss Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D.E. Groom, N.V. Mokhov, and S.I. Striganov, “Muon stopping- power and range tables,” Atomic Data and Nuclear Data Tables, to be published (2000).Google Scholar
  2. 2.
    “Stopping Powers and Ranges for Protons and Alpha Particles,” ICRU Report No. 49 (1993); Tables and graphs of these data are available at http://physics.nist.gov/PhysRefData/.Google Scholar
  3. 3.
    W.H. Barkas, W. Birnbaum, and F.M. Smith, Phys. Rev.101, 778 (1956).CrossRefADSGoogle Scholar
  4. 4.
    B. Rossi,High Energy Particles, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1952.Google Scholar
  5. 5.
    U. Fano, Ann. Rev. Nucl. Sci.13, 1 (1963).CrossRefADSGoogle Scholar
  6. 6.
    J. D. Jackson, Phys. Rev.D59, 017301 (1999).ADSGoogle Scholar
  7. 7.
    S.M. Seltzer and M.J. Berger, Int. J. of Applied Rad.33, 1189 (1982).CrossRefGoogle Scholar
  8. 8.
    “Stopping Powers for Electrons and Positrons,” ICRU Report No. 37 (1984).Google Scholar
  9. 9.
    http://physics.nist.gov/PhysRefData/XrayMassCoef/tabl.html.Google Scholar
  10. 10.
    J.D. Jackson,Classical Electrodynamics, 3rd edition, (John Wiley & Sons, New York, 1998).Google Scholar
  11. 11.
    R.M. Sternheimer, Phys. Rev.88, 851 (1952).CrossRefADSGoogle Scholar
  12. 12.
    A. Crispin and G.N. Fowler, Rev. Mod. Phys.42, 290 (1970).CrossRefADSGoogle Scholar
  13. 13.
    R.M. Sternheimer and R.F. Peierls, Phys. Rev. B3, 3681 (1971).ADSGoogle Scholar
  14. 14.
    R.M. Sternheimer, S.M. Seltzer, and M.J. Berger, “The Density Effect for the Ionization Loss of Charged Particles in Various Substances,” Atomic Data & Nucl. Data Tables30, 261 (1984). An error resulting from an incorrect chemical formula for lanthanum oxysulfide is corrected in a footnote in Ref. 22. Chemical composition for the tabulated materials is given in Ref. 7.CrossRefADSGoogle Scholar
  15. 15.
    W.H. Barkas and M.J. Berger,Tables of Energy Losses and Ranges of Heavy Charged Particles, NASA-SP-3013 (1964).Google Scholar
  16. 16.
    M. Agnelloet al., Phys. Rev. Lett.74, 371 (1995).CrossRefADSGoogle Scholar
  17. 17.
    H.H. Andersen and J.F. Ziegler,Hydrogen: Stopping Powers and Ranges in All Elements. Vol. 3 ofThe Stopping and Ranges of Ions in Matter (Pergamon Press 1977).Google Scholar
  18. 18.
    J. Lindhard, Kgl. Danske Videnskab. Selskab, Mat.-Fys. Medd.28, No. 8 (1954).Google Scholar
  19. 19.
    J. Lindhard, M. Scharff, and H.E. Schiøtt, Kgl. Danske Videnskab. Selskab, Mat.-Fys. Medd.33, No. 14 (1963).Google Scholar
  20. 20.
    J.F. Ziegler, J.F. Biersac, and U. Littmark,The Stopping and Range of Ions in Solids, Pergamon Press 1985.Google Scholar
  21. 21.
    L.D. Landau, J. Exp. Phys. (USSR) 8, 201 (1944); See, for instance, K.A. Ispirian, A.T. Margarian, and A.M. Zverev, Nucl. Instrum. Methods117, 125 (1974).Google Scholar
  22. 22.
    S.M. Seltzer and M.J. Berger, Int. J. of Applied Rad.35, 665 (1984). This paper corrects and extends the results of Ref. 7.CrossRefGoogle Scholar
  23. 23.
    W.R. Nelson, H. Hirayama, and D.W.O. Rogers, “The EGS4 Code System,” SLAC-265, Stanford Linear Accelerator Center (Dec. 1985).Google Scholar
  24. 24.
    K. Hikasaet al.,Review of Particle Properties, Phys. Rev.D46 (1992) S1.Google Scholar
  25. 25.
    For unit-charge projectiles, see E.A. Uehling, Ann. Rev. Nucl. Sci.4, 315 (1954). For highly charged projectiles, see J.A. Doggett and L.V. Spencer, Phys. Rev.103, 1597 (1956). A Lorentz transformation is needed to convert these center-of-mass data to knock-on energy spectra.CrossRefADSGoogle Scholar
  26. 26.
    N.F. Mott and H.S.W. Massey,The Theory of Atomic Collisions, Oxford Press, London, 1965.Google Scholar
  27. 27.
    L.V. Spencer “Energy Dissipation by Fast Electrons,” Nat'l Bureau of Standards Monograph No. 1 (1959).Google Scholar
  28. 28.
    “Average Energy Required to Produce an Ion Pair,” ICRU Report No. 31 (1979).Google Scholar
  29. 29.
    N. Hadleyet al., “List of Poisoning Times for Materials,” Lawrence Berkeley Lab Report TPC-LBL-79-8 (1981).Google Scholar
  30. 30.
    H.A. Bethe, Phys. Rev.89, 1256 (1953). A thorough review of multiple scattering is given by W.T. Scott, Rev. Mod. Phys.35, 231 (1963). However, the data of Shenet al., (Phys. Rev.D20, 1584 (1979)) show that Bethe's simpler method of including atomic electron effects agrees better with experiment that does Scott's treatment. For a thorough discussion of simple formulae for single scatters and methods of compounding these into multiple-scattering formulae, see W.T. Scott, Rev. Mod. Phys.35, 231 (1963). For detailed summaries of formulae for computing single scatters, see J.W. Motz, H. Olsen, and H.W. Koch, Rev. Mod. Phys.36, 881 (1964).zbMATHCrossRefADSGoogle Scholar
  31. 31.
    V.L. Highland, Nucl. Instrum. Methods129, 497 (1975), and Nucl. Instrum. Methods161, 171 (1979).CrossRefGoogle Scholar
  32. 32.
    G.R. Lynch and O.I Dahl, Nucl. Instrum. Methods B58, 6 (1991).ADSGoogle Scholar
  33. 33.
    M. Wonget al., Med. Phys.17, 163 (1990).CrossRefGoogle Scholar
  34. 34.
    Y.S. Tsai, Rev. Mod. Phys.46, 815 (1974).CrossRefADSGoogle Scholar
  35. 35.
    H. Davies, H.A. Bethe, and L.C. Maximon, Phys. Rev.93, 788 (1954).CrossRefADSGoogle Scholar
  36. 36.
    O.I. Dahl, private communication.Google Scholar
  37. 37.
    L.D. Landau and I.J. Pomeranchuk, Dokl. Akad. Nauk. SSSR92, 535 (1953);92, 735 (1953). These papers are available in English in L. Landau,The Collected Papers of L.D. Landau, Pergamon Press, 1965; A.B. Migdal, Phys. Rev.103, 1811 (1956).zbMATHGoogle Scholar
  38. 38.
    S. Klein, Rev. Mod. Phys.71, 1501 (1999).CrossRefADSGoogle Scholar
  39. 39.
    M. L. Ter-Mikaelian, SSSR94, 1033 (1954); M. L. Ter-Mikaelian,High Energy Electromagnetic Processes in Condensed Media (John Wiley & Sons, New York, 1972).Google Scholar
  40. 40.
    P. Anthonyet al., Phys. Rev. Lett.76, 3550 (1996).CrossRefADSGoogle Scholar
  41. 41.
    H. W. Koch and J. W. Motz, Rev. Mod. Phys.31, 920 (1959).CrossRefADSGoogle Scholar
  42. 42.
    M.J. Berger and S.M. Seltzer, “Tables of Energy Losses and Ranges of Electrons and Positrons,” National Aeronautics and Space Administration Report NASA-SP-3012 (Washington DC 1964).Google Scholar
  43. 43.
    J. W. Motz, H. A. Olsen, and H. W. Koch, Rev. Mod. Phys.41, 581 (1969).CrossRefADSGoogle Scholar
  44. 44.
    P. Anthonyet al., Phys. Rev. Lett.75, 1949 (1995).CrossRefADSGoogle Scholar
  45. 45.
    Experimental Techniques in High Energy Physics, ed. by T. Ferbel (Addision-Wesley, Menlo Park CA 1987).Google Scholar
  46. 46.
    U. Amaldi, Phys. Scripta23, 409 (1981).CrossRefGoogle Scholar
  47. 47.
    E. Longo and I. Sestili, Nucl. Instrum. Methods128, 283 (1975).CrossRefGoogle Scholar
  48. 48.
    G. Grindhammeret al., inProceedings of the Workshop on Calorimetry for the Supercollider, Tuscaloosa, AL, March 13–17, 1989, edited by R. Donaldson and M.G.D. Gilchriese (World Scientific, Teaneck, NJ, 1989), p. 151.Google Scholar
  49. 49.
    W.R. Nelson, T.M. Jenkins, R.C. McCall, and J.K. Cobb, Phys. Rev.149, 201 (1966).CrossRefADSGoogle Scholar
  50. 50.
    G. Bathowet al., Nucl. Phys.B20, 592 (1970).CrossRefADSGoogle Scholar
  51. 51.
    H.A. Bethe and W. Heitler,Proc. Roy. Soc. A146, 83 (1934); H.A. Bethe,Proc. Cambridge Phil Soc. 30, 542 (1934).CrossRefADSGoogle Scholar
  52. 52.
    A.A. Petrukhin and V.V. Shestakov, Can. J. Phys.46,S3777 (1968).Google Scholar
  53. 53.
    V.M. Galitskii and S.R. Kel'ner, Sov. Phys. JETP25, 948 (1967).ADSGoogle Scholar
  54. 54.
    S.R. Kel'ner and Yu.D. Kotov, Sov. J. Nucl. Phys.7, 237 (1968).Google Scholar
  55. 55.
    R.P. Kokoulin and A.A. Petrukhin, inProceedings of the International Conference on Cosmic Rays, Hobart, Australia, August 16–25, 1971, Vol. 4, p. 2436.Google Scholar
  56. 56.
    A.I. Nikishov, Sov. J. Nucl. Phys.27, 677 (1978).Google Scholar
  57. 57.
    Y.M. Andreevet al., Phys. Atom. Nucl.57, 2066 (1994).ADSGoogle Scholar
  58. 58.
    L.B. Bezrukov and E.V. Bugaev, Sov. J. Nucl. Phys.33, 635 (1981).Google Scholar
  59. 59.
    N.V. Mokhov and J.D. Cossairt, Nucl. Instrum. MethodsA244, 349 (1986); N.V. Mokhov, Soviet J. Particles and Nuclei18(5), 408-426 (1987); N.V. Mokhov, “The MARS Code System User's Guide, Version 13(95),” Fermilab-FN-628, (April 1995).ADSGoogle Scholar
  60. 60.
    P.H. Barrett, L.M. Bollinger, G. Cocconi, Y. Eisenberg, and K. Greisen, Rev. Mod. Phys.24, 133 (1952).CrossRefADSGoogle Scholar
  61. 61.
    W. Lohmann, R. Kopp, and R. Voss, “Energy Loss of Muons in the Energy Range 1-10000 GeV,” CERN Report 85-03 (1985).Google Scholar
  62. 62.
    A. Van Ginneken, Nucl. Instrum. MethodsA251, 21 (1986).ADSGoogle Scholar
  63. 63.
    U. Beckeret al., Nucl. Instrum. MethodsA253, 15 (1986).ADSGoogle Scholar
  64. 64.
    J.J. Eastman and S.C. Loken, inProceedings of the Workshop on Experiments, Detectors, and Experimental Areas for the Supercollider, Berkeley, CA, July 7–17, 1987, edited by R. Donaldson and M.G.D. Gilchriese (World Scientific, Singapore, 1988), p. 542.Google Scholar
  65. 65.
    Methods of Experimental Physics, L.C.L. Yuan and C.-S. Wu, editors, Academic Press, 1961, Vol. 5A, p. 163.Google Scholar
  66. 66.
    W.W.M. Allison and P.R.S. Wright, “The Physics of Charged Particle Identification:dE/dx, Cerenkov Radiation, and Transition Radiation,” p. 371 inExperimental Techniques in High Energy Physics, T. Ferbel, editor, (Addison-Wesley 1987).Google Scholar
  67. 67.
    E.R. Hayes, R.A. Schlüter, and A. Tamosaitis, “Index and Dispersion of Some Cerenkov Counter Gases,” ANL-6916 (1964).Google Scholar
  68. 68.
    T. Ypsilantis, “Particle Identification at Hadron Colliders”, CERN-EP/89-150 (1989), or ECFA 89-124,2 661 (1989).Google Scholar

Copyright information

© Springer-Verlag 2000

Authors and Affiliations

  • D. E. Groom
  • S. R. Klein

There are no affiliations available

Personalised recommendations