, 8:125 | Cite as

Husserl’s relevance for the philosophy and foundations of mathematics

  • Guillermo E. Rosado Haddock


Mathematical Objectualities Sense Perception Categorial Objectualities Logical Investigation Categorial Perception 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. [Ajdukiewicz 1935]
    K. Ajdukiewicz, “Die syntaktische Konnexität,”Studia Philosophica I, 1935, 1–27, translated in S. Mc Call (ed.),Polish Logic, Oxford 1967, 207–31.Google Scholar
  2. [Bachelard 1957]
    S. Bachelard,La Logique de Husserl, Paris 1957.Google Scholar
  3. [Beth 1965]
    E. W. Beth,The Foundations of Mathematics, revised edition, Amsterdam 1965.Google Scholar
  4. [Bourbaki 1950]
    N. Bourbaki, “The Architecture of Mathematics,”American Mathematical Monthly 57, 1950, 221–32.CrossRefGoogle Scholar
  5. [Carnap 1937]
    R. Carnap,Die logische Syntax der Sprache 1934, English expanded version, London 1937.Google Scholar
  6. [Cortois forthcoming]
    P. Cortois, “The Architectonic of Husserl’sFormal and Transcendental Logic,” forthcoming inHistory and Philosophy of Logic.Google Scholar
  7. [da Silva 1993]
    J. Da Silva, “Husserl’s Philosophy of Mathematics,”Manuscrito 16(2), 1993, 121–48.Google Scholar
  8. [Dummett 1974]
    M. Dummett,Frege: Philosophy of Language, London & Cambridge, Ma. 1974.Google Scholar
  9. [Dummett 1981]
    M. Dummett,The Interpretation of Frege’s Philosophy, London & Cambridge, Ma. 1981.Google Scholar
  10. [Dummett 1991]
    M. Dummett,Frege: Philosophy of Mathematics, London & Cambridge, Ma. 1991.Google Scholar
  11. [Farber 1943]
    M. Farber,The Foundation of Phenomenology, New York 1943.Google Scholar
  12. [Fine 1995]
    K. Fine, “Part-whole,” in B. Smith and D. W. Smith, eds.,The Cambridge Companion to Husserl, Cambridge 1995, 463–85.Google Scholar
  13. [Føllesdal 1964]
    D. Føllesdal,Husserl und Frege 1964, translation in L. Haaparanta, ed.,Mind, Meaning and Mathematics, Dordrecht 1994, 3–47.Google Scholar
  14. [Frege 1964]
    G. Frege,Begriffsschrift 1879, reprint Darmstadt 1964.Google Scholar
  15. [Frege 1884]
    G. Frege,Die Grundlagen der Arithmetik 1884, Centenarausgabe, Hamburg 1986.Google Scholar
  16. [Frege 1893]
    G. Frege,Grundgesetze der Arithmetik I 1893 & II 1903, reprinted in one volume, Hildesheim 1962.Google Scholar
  17. [Frege 1969]
    G. Frege,Nachgelassene Schriften, Hamburg 1969.Google Scholar
  18. [Frege 1974]
    G. Frege,Wissenschaftlicher Briefwechsel, Hamburg 1974.Google Scholar
  19. [Frege 1991]
    G. Frege,Kleine Schriften, second edition, Hildesheim 1991.Google Scholar
  20. [Gödel 1931]
    K. Gödel, “Über formal unentscheidbare Sätze derPrincipia Mathematica und verwandter Systeme” 1931, reprinted inCollected Works I, Oxford 1986, 144–95.Google Scholar
  21. [Hill 1991]
    C.O. Hill,Word and Object in Husserl, Frege and Russell, Athens, Ohio 1991.Google Scholar
  22. [Hill 1994a]
    C.O. Hill, “Frege’s Attack on Husserl and Cantor,”The Monist 77(3) 1994, 345–357.Google Scholar
  23. [Hill 1994b]
    C.O. Hill, “Husserl and Frege on Substitutivity,” in L. Haaparanta, ed.,Mind, Meaning and Mathematics, Dordrecht 1994, 113–40.Google Scholar
  24. [Hill 1995a]
    C.O. Hill, “Frege’s Letters,” in J. Hintikka, ed.,From Dedekind to Gödel, Dordrecht 1995, 97–118.Google Scholar
  25. [Hill 1995b]
    C.O. Hill, “Husserl and Hilbert on Completeness,” in J. Hintikka, ed.,From Dedekind to Gödel, Dordrecht 1995, 143–63.Google Scholar
  26. [Husserl 1891]
    E. Husserl,Philosophie der Arithmetik 1891,Husserliana edition, Vol. XII, The Hague 1970.Google Scholar
  27. [Husserl 1900–01]
    E. Husserl,Logische Untersuchungen 1900–1901,Husserliana edition, Vols. XVIII & XIX, The Hague 1975 & 1984.Google Scholar
  28. [Husserl 1913]
    E. Husserl,Ideen zu einer reinen Phänomenologie und einer phänomenologischen Philosophie I, 1913,Husserliana revised edition, The Hague 1976.Google Scholar
  29. [Husserl 1929]
    E. Husserl,Formale und transzendentale Logik, 1929,Husserliana edition, Vol. XVII, The Hague 1974.Google Scholar
  30. [Husserl 1976]
    E. Husserl,Erfahrung und Urteil, 1939, fifth edition, Hamburg 1976.Google Scholar
  31. [Husserl 1956]
    E. Husserl,Erste Philosophie I,Husserliana Vol. VII, The Hague 1956.Google Scholar
  32. [Husserl 1975]
    E. Husserl,Introduction to the Logical Investigations, The Hague 1975.Google Scholar
  33. [Husserl 1979]
    E. Husserl,Aufsätze und Rezensionen 1890–1910, Husserliana Vol. XXII, The Hague 1979.Google Scholar
  34. [Husserl 1983]
    E. Husserl,Studien zur Arithmetik und Geometrie, Husserliana Vol. XXI, The Hague 1983.Google Scholar
  35. [Husserl 1984]
    E. Husserl,Einleitung in die Logik und Erkenntnistheorie, Husserliana Vol. XXIV, Dordrecht 1984.Google Scholar
  36. [Husserl 1987]
    E. Husserl,Vorlesungen über Bedeutungslehre, Husserliana Vol. XXVI, Dordrecht 1987.Google Scholar
  37. [Mohanty 1982]
    J.N. Mohanty,Husserl and Frege, Bloomington, Indiana 1982.Google Scholar
  38. [Null and Simons 1982]
    G.T. Null and R.A. Simons, “Manifolds, Concepts and Moment-Abstracta,” in B. Smith, ed.,Parts and Moments, München 1982, 439–80.Google Scholar
  39. [Parsons 1995]
    Ch.D. Parsons, “Platonism and Mathematical Intuition in Kurt Gödel’s Thought,”The Bulletin of Symbolic Logic 1(1) 1995, 44–74.CrossRefGoogle Scholar
  40. [Poli 1993]
    R. Poli, “Husserl’s Conception of Formal Ontology,”History and Philosophy of Logic 14, 1993, 1–14.CrossRefGoogle Scholar
  41. [Resnik 1980]
    M.D. Resnik,Frege and the Philosophy of Mathematics, Ithaca, New York 1980.Google Scholar
  42. [Rosado Haddock 1973]
    G.E. Rosado Haddock,Edmund Husserls Philosophie der Logik und Mathematik im Lichte der gegenwärtigen Logik und Grundlagenforschung, Bonn 1973.Google Scholar
  43. [Rosado Haddock 1982a]
    G.E. Rosado Haddock, “Remarks on Sense and Reference in Frege and Husserl,”Kant-Studien 73(4) 1982, 425–39.CrossRefGoogle Scholar
  44. [Rosado Haddock 1982b]
    G.E. Rosado Haddock, “Identity Statements in the Semantics of Sense and Reference,”Logique et Analyse 25(100) 1982, 399–411.Google Scholar
  45. [Rosado Haddock 1986]
    G.E. Rosado Haddock, “On Frege’s Two Notions of Sense,”History and Philosophy of Logic 7(1) 1986, 31–41.CrossRefGoogle Scholar
  46. [Rosado Haddock 1987]
    G.E. Rosado Haddock, “Husserl’s Epistemology of Mathematics and the Foundation of Platonism in Mathematics,”Husserl Studies 4(2) 1987, 81–102.CrossRefGoogle Scholar
  47. [Rosado Haddock 1991a]
    G.E. Rosado Haddock, “On Husserl’s Distinction between State of Affairs (Sachverhalt) and Situation of Affairs (Sachlage),” in D. Føllesdal, J.N. Mohanty and Th.M. Seebohm, eds.,Phenomenology and the Formal Sciences, Dordrecht 1991, 35–48.Google Scholar
  48. [Rosado Haddock 1991b]
    G.E. Rosado Haddock, “Review of R.L. Tieszen,Mathematical Intuition: Phenomenology and Mathematical Knowledge,”Journal of Symbolic Logic 56(1), 360–64.Google Scholar
  49. [Rosado Haddock 1992]
    G.E. Rosado Haddock, “Interderivability of Seemingly Unrelated Mathematical Statements and the Philosophy of Mathematics,”Diálogos 59, 1992, 121–34.Google Scholar
  50. [Rosado Haddock 1996a]
    G.E. Rosado Haddock, “On Antiplatonism and its Dogmas,”Diálogos 67 1996, 7–38.Google Scholar
  51. [Rosado Haddock 1996b]
    G.E. Rosado Haddock, “On the Semantics of Mathematical Statements,”Manuscrito 19(1) 1996, 149–75.Google Scholar
  52. [Rosado Haddock forthcoming a]
    G.E. Rosado Haddock, “Edmund Husserl: a Philosopher for all Seasons?, review of B. Smith and D.W. Smith, eds.,The Cambridge Companion to Husserl,” forthcoming inModern Logic.Google Scholar
  53. [Rosado Haddock forthcoming b]
    G.E. Rosado Haddock, “To be a Fregean or to be a Husserlian: that is the Question for Platonists,” forthcoming.Google Scholar
  54. [Schuhmann 1978]
    K. Schuhmann,Husserl Chronik, The Hague 1978.Google Scholar
  55. [Simons 1982]
    P.M. Simons, “The Formalisation of Husserl’s Theory of Wholes and Parts,” in B. Smith, ed.,Parts and Moments, München 1982, 113–59.Google Scholar
  56. [Simons 1995]
    P.M. Simons, “Meaning and Language,” in B. Smith and D.W. Smith, eds.,The Cambridge Companion to Husserl, Cambridge 1995, 106–37.Google Scholar
  57. [Sluga 1980]
    H. Sluga,Gottlob Frege, London 1980.Google Scholar
  58. [Sluga 1986]
    H. Sluga, “Semantic Content and Cognitive Sense,” in L. Haaparanta and J. Hintikka, eds.,Frege Synthesized, Dordrecht 1986, 47–64.Google Scholar
  59. [Smith 1995]
    B. Smith, “Zur Kognition räumlicher Grenzen: Eine mereotopologische Untersuchung,”Kognitionswissenshaft 4, 1995, 177–84.CrossRefGoogle Scholar
  60. [Smith forthcoming a]
    B. Smith, “The Formal Ontology of Space: An Essay in Mereotopology,” in L. Hahn, ed.,The Philosophy of Roderick Chisolm.Google Scholar
  61. [Smith forthcoming b]
    B. Smith, “Ontology and the Logistic Analysis of Reality,” forthcoming.Google Scholar
  62. [Tarski 1935]
    A. Tarski, “The Concept of Truth in Formalized Languages” 1935 (in German), translation in A. Tarski,Logic, Semantics, Metamathematics 1956, second edition, Indianapolis, 1983, 152–278.Google Scholar
  63. [Thiel 1986]
    C. Thiel, “Einleitung” to the Centenarausgabe of Frege’sDie Grundlagen der Arithmetik, Hamburg 1986.Google Scholar
  64. [Tieszen 1989]
    R.L. Tieszen,Mathematical Intuition: Phenomenology and Mathematical Knowledge, Dordrecht 1989.Google Scholar
  65. [Tieszen 1994]
    R.L. Tieszen, “The Philosophy of Arithmetic: Frege and Husserl,” in L. Haaparanta, ed.,Mind, Meaning and Mathematics, Dordrecht 1994, 85–109.Google Scholar
  66. [Tieszen 1995]
    R.L. Tieszen, “Mathematics,” in B. Smith and D.W. Smith, eds.,The Cambridge Companion to Husserl, Cambridge 1995, 438–462.Google Scholar

Copyright information

© Centro Studi per la Filosofia Mitteleuropea 1997

Authors and Affiliations

  • Guillermo E. Rosado Haddock
    • 1
  1. 1.Department of PhilosophyUniversity of Puerto Rico at Rio PiedrasPuerto Rico

Personalised recommendations