Self-diffusion in aluminum at low temperatures
- 412 Downloads
- 16 Citations
Abstract
Values of the self-diffusivity of pure aluminum in the temperature range 130∮ to 200° have been determined by measuring the rate of annealing of prismatic and faulted dislocation loops in thin foils of quenched 99.999 pct Al using a diffusion-controlled climb model due to Seidman and Balluffi modified to take into account elastic interaction between vacancies and dislocations. Changes in line energy of prismatic loops with orientation were evaluated and found to produce a maximum error in D of 17 pct. Other possible sources of error were evaluated. The results giveD = 0.19 ± 0.06 exp—(1.28 ± 0.04ev/KT sq cm per sec. A direct method of determining the activation energy for self-diffusion from prismatic loop annealing rates is presented which minimizes the effects of many sources of variation in individual climb rates.
Keywords
Metallurgical Transaction Pure Aluminum Metallurgical Transaction Volume Foil Thickness Frank LoopPreview
Unable to display preview. Download preview PDF.
References
- l.T. S. Lundy and J. F.Murdock:J. App. Phys., 1962, vol. 33, p. 1671.CrossRefGoogle Scholar
- 2.M. Beyeler and T. Adda:J Phys. (Paris), 1968, vol. 29, p. 345.CrossRefGoogle Scholar
- 3.N. L. Peterson and S. J. Rothman:Phys. Rev., 1970, vol. Bl, p. 3264.CrossRefGoogle Scholar
- 4.E. I. Fradin and T. J. Rowland:Appl. Phys. Lett., 1967, vol. 11, p. 207.CrossRefGoogle Scholar
- 5.T. G. Stoebe, R. D. Gulliver, T. O. Ogurtani, and R. A. Huggins:ActaMet, 1965, vol. 13, p. 701.Google Scholar
- 6.T. J. Spokas and C. P. Slichter:Phys. Rev., 1959, vol. L13, p. 1462.CrossRefGoogle Scholar
- 7.T. G. Stoebe and H. I. Dawson:Phys. Rev., 1968, vol. 166, p. 621.CrossRefGoogle Scholar
- 8.A. Seeger and H. Mehrer:Vacancies and Interstitials in Metals, p. 1, North Holland, 1970.Google Scholar
- 9.R. 0. Simmons and R. W. Balluffi:Phys. Rev., 1960, vol. 117, p. 162.Google Scholar
- 10.T. E. Volin and R. W. Balluffi:Phys. Status. Solidi, 1968, vol. 25, p. 163.CrossRefGoogle Scholar
- 11.P. S. Dobson, P. J. Goodhew, and R. E. Smallman:Phil. Mag., 1967, vol. 16, p. 9.CrossRefGoogle Scholar
- 12.J. P. Tartour and J. Washburn:Phil. Mag., 1968, vol. 18, p. 1257.CrossRefGoogle Scholar
- 13.D. N. Seidman and R. W. Balluffi:Phil. Mag., 1966, vol. 13, p. 649.CrossRefGoogle Scholar
- 14.J. Silcox and M. J. Whelan:Phil. Mag., 1960, vol. 5, p. 1.CrossRefGoogle Scholar
- 15.J. A. Turnbull and M’ S. Stagg:Phil. Mag., 1966, vol. 14, p. 1049.CrossRefGoogle Scholar
- 16.R. Bullough and R. C. Newman:At. Energy Res. Establ., 1970, Rep. No. R 6215.Google Scholar
- 17.H. Wenzl:Vacancies and Interstirials in Metals, p. 363, North Holland, 1970.Google Scholar
- 18.V. Walder and J. Burke: University College, Swansea, unpublished research.Google Scholar
- 19.D. J. Bacon and R. Bullough:Phil. Mag., 1968, vol. 18, p. 561.CrossRefGoogle Scholar
- 20.R. Bullough and R. C. Newman:Phil. Mag., 1962, vol. 7, p. 529.CrossRefGoogle Scholar
- 21.G. B. Gibbs and J. A. Turnbull:Met. Sci.J., 1967, vol. 1, p. 25.CrossRefGoogle Scholar
- 22.D. J. Bacon and A. G. Crocker:Lattice Defects in Quenched Metals, p. 667, Academic Press, New York, 1965.Google Scholar
- 23.M. J. Makin and B. Hudson:Phil. Mag., 1963, vol. 8, p. 447:Phil Mag., 1965, vol. 11, p. 423.CrossRefGoogle Scholar
- 24.P. S. Dobson and R. E.Smallman:Proc. Roy. Soc, Ser. A., 1966, vol. 293, p. 423.CrossRefGoogle Scholar
- 25.J. W. Edington and R. E. Smallman:Phil. Mag., 1965, vol. 11, p. 1109.CrossRefGoogle Scholar
- 26.J. Jossang and J. P. Hirth:Phil. Mag., 1966, vol. 12, p. 657.CrossRefGoogle Scholar
- 27.J. E. Harris and B. C. Masters:Proc. Roy. Soc, Ser. A, 1966, vol. 292, p. 240.CrossRefGoogle Scholar
- 28.S. Kritzinger, P. S. Dobson, R. E. Smallman:Phil. Mag., 1967, vol. 66, p. 217.CrossRefGoogle Scholar
- 29.R. W. Balluffi, K. H. Lie, D. N. Seidman, and R. W. Siegel:Vacancies and Interstitials in Metals, L. 125, North Holland, 1970.Google Scholar