Metallurgical and Materials Transactions B

, Volume 3, Issue 1, pp 55–64 | Cite as

Thermodynamics and phase diagram of the Fe-C system

  • John Chipman
Physical Chemistry


A critical review of published data provides a fairly accurate knowledge of the thermodynamic properties of all of the phases of the system Fe-C that are stable or metastable at atmospheric pressure. Selected data are shown as tables and equations. A proposed phase diagram differs only slightly from others recently published but has the following features. Peritectic compositions and the α-γ equilibrium are shown to agree with measured values of the activity of iron in the solid and liquid solutions and the thermodynamic properties of pure iron. Of all the reported carbides of iron only two may be studied under equilibrium conditions. The solubilities of cementite and of χ-carbide in α-Fe are deduced from measured equilibria. Both are metastable at all temperatures with respect to graphite and its saturated solution in iron. The χ-carbide becomes more stable than cementite below about 230° Certain published data on ε-carbide permit an estimate of its free energy as a precipitate during the aging process.


Carbide Free Energy Austenite Cementite Metallurgical Transaction Volume 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Hansen and K. Anderko:Constitution of Binary Alloys, McGraw-Hill, New York, 2nd ed., 1958.Google Scholar
  2. 2.
    J. F. Elliott and M. Gleiser:Thermochemistry for Steelmaking, Addison-Wesley, Reading, Massachusetts, Vol. I, 1960.Google Scholar
  3. 3.
    M. Benz and J. F.Elliott:Trans. TMS-AIME, 1961, vol. 221, pp. 323–31;Trans. TMS-AIME, 1961, vol. 221, p. 888.Google Scholar
  4. 4.
    R. A. Buckley and W. Hume-Rothery:J Iron Steel Inst., a) 1960, vol. 196, pp. 403–06; b) 1962, vol. 200, pp. 142–43.Google Scholar
  5. 5.
    L. S. Darken and R. W. Gurry:The Physical Chemistry of Metals, McGraw-Hill, New York, 1953.Google Scholar
  6. 6.
    R. Hultgren, R. L. Orr, P. D. Anderson, and K. K. Kelley:Selected Values of Thermodynamic Properties of Metals and Alloys, John Wiley and Sons, New York, 1953.Google Scholar
  7. 7.
    E. Scheil, T. Schmidt, and J. Wünning:Arch. Eisenhuettenw., 1961, vol. 32, pp. 251–60.Google Scholar
  8. 8.
    S. Ban-ya, J. F. Elliott, and J. Chipman:Met. Trans., 1970, vol. 1, pp. 1313- 20.CrossRefGoogle Scholar
  9. 9.
    J. C. Swartz:Trans. TMS-AIME, a) 1967, vol. 239, pp. 68–75; b) 1969, vol. 245, pp. 1083–91.Google Scholar
  10. 10.
    A. Ferrier and M. Olette:C. R. Acad. Sci., Paris, 1962, vol. 254, pp. 2322–24.Google Scholar
  11. 11.
    J. P. Morris, E. F. Foerster, C. W. Schultz, and G. R. Zellars:U. S. Bur. Mines, Rept. Invest, no. 6723, 1966.Google Scholar
  12. 12.
    M. Olette and A. Ferrier:The Physical Chemistry of Metallic Solutions and Intermetallic Compounds, Nat. Phys. Lab., U. K., Symp. No. 9, Paper 4H, H.M. Stationery Office, London, 1959.Google Scholar
  13. 13.
    P. D. Anderson and R. Hultgren:Trans. TMS-AIME, 1962, vol. 224, pp. 842- 45.Google Scholar
  14. 14.
    W. A. Dench and O. Kubaschewski:J. Iron Steel Inst, 1963, vol. 201, pp. 140- 43.Google Scholar
  15. 15.
    M. Braun: Übe die spezifische Wärme von Eisen, Kobalt, und Nickel im Bereich hoher Temperaturen, Inaugural Dissertation, Universität zu Köln, Germany, 1964.Google Scholar
  16. 16.
    D. C. Wallace, P. H. Sidles, G. C. Danielson:J. Appl. Phys., 1960, vol. 31, pp. 168–76.CrossRefGoogle Scholar
  17. 17.
    R. L. Orr and J. Chipman:Trans. TMS-AIME, 1967, vol. 239, pp. 630–33.Google Scholar
  18. 18.
    F. D. Rossini:J. Chem. Thermodynamics, 1970, vol. 2, pp. 447–59.CrossRefGoogle Scholar
  19. 19.
    H. Dünwald and C. Wagner:Z. Anorg. Allgem. Chem., 1931, vol. 199, pp. 321–46.CrossRefGoogle Scholar
  20. 20.
    R. P. Smith:J Am. Chem. Soc., 1946, vol. 68, pp. 1163–75.CrossRefGoogle Scholar
  21. 21.
    H. Schenck and H. Kaiser:Arch. Eisenhuettenw., 1960, vol. 31, pp. 227–35.Google Scholar
  22. 22.
    E. Schürmann, T. Schmidt, and H. Wegener:Giesserei, 1964, vol. 16, pp. 91–98.Google Scholar
  23. 23.
    C. Wells:Trans. ASM, 1938, vol. 26, p. 289.Google Scholar
  24. 24.
    R. W. Gurry:AIME Trans., 1942, vol. 150, pp. 147–53.Google Scholar
  25. 25.
    F. Adcock:J. Iron Steel Inst, 1937, vol. 135, p. 281.Google Scholar
  26. 26.
    F. D. Richardson and W. E. Dennis:Trans. Faraday Soc, 1953, vol. 49, pp. 171–80.CrossRefGoogle Scholar
  27. 27.
    J. Chipman:Met Trans., 1970, vol. 1, pp. 2163–68.CrossRefGoogle Scholar
  28. 28.
    T. Syu, A. V. Polyakov, and A. M. Samarin:lzv. Vyssh. Ucheb. Zaved., Chem. Met, 1959, no. 11, pp. 3–12.Google Scholar
  29. 29.
    R. Ruer and J. Biren:Z. Anorg. Allgem. Chem., 1920, vol. 113, pp. 98–112.CrossRefGoogle Scholar
  30. 30.
    J. Chipman, R. M. Alfred, L. W. Gott, R. B. Small, D. M. Wilson, C. N. Thomson, D. L. Guernsey, and J. C. Fulton:Trans. ASM, 1952, vol. 44, pp. 1215–30.Google Scholar
  31. 31.
    J. A. Kitchener, J. O’M. Bockris, and D. A. Spratt:Trans. Faraday Soc, 1952, vol. 48, p. 608.CrossRefGoogle Scholar
  32. 32.
    J. A. Cahill, A. D. Kirshenbaum, and A. V. Grosse:Trans. ASM, 1964, vol. 57, pp. 417–26.Google Scholar
  33. 33.
    A. A. Vertman, V. K. Grigorovich, N. A. Nedumov, and A. M. Samarin:Dokl. Akad. Nauk. SSSR, 1964, vol. 159, pp. 121–24.Google Scholar
  34. 34.
    J. C. Ruth and M. Turpin:C. R. Acad. Sci., Paris, 1967, vol. 265, pp. 786–88.Google Scholar
  35. 35.
    C. Boulanger:C. R. Acad. Sci., Paris, 1955, vol. 241, p. 1133.Google Scholar
  36. 36.
    R. F. Mehl and C. Wells:Trans. AIME, 1937, vol. 125, p. 429.Google Scholar
  37. 37.
    R. P. Smith and L. S. Darken:Trans. AIME, 1959, vol. 215, p. 727.Google Scholar
  38. 38.
    E. Schürmann, T. Schmidt, and F. Tillmann:Giessereiforschung, 1967, vol. 19, pp. 35–41.Google Scholar
  39. 39.
    R. P. Smith:Trans. TMS-AIME, 1962, vol. 224, pp. 105–11.Google Scholar
  40. 40.
    N. J. Petch:J. Iron Steel Inst., 1944, vol. 149, pp. 143–50.Google Scholar
  41. 41.
    W. Glud, K. V. Otto, and H. Ritter:Ber. Ges. Kohlentech., 1929, vol. 3, p. 40.Google Scholar
  42. 42.
    U. Hofmann and E. Groll:Z. Anorg. Allgem. Chem., 1930, vol. 191, p. 414.CrossRefGoogle Scholar
  43. 43.
    H. A. Bahr and V. Jessen:Ber. Deut. Chem. Ges., 1933, vol. 66, p. 1238.CrossRefGoogle Scholar
  44. 44.
    G. Hägg:Z. Kristallogr., 1934, vol. 89, p. 92.Google Scholar
  45. 45.
    K. H. Jack:Proc. Roy. Soc., 1948,A, vol. 195, p. 56.CrossRefGoogle Scholar
  46. 46.
    L. S. Darken and R. W. Gurry:AIME Trans., 1951, pp. 1015–18.Google Scholar
  47. 47.
    R. P. Smith:Trans. TMS-AIME, 1959, vol. 215, pp. 954–57.Google Scholar
  48. 48.
    M. Hillert:Acta Met., 1955, vol. 3, pp. 37–38.CrossRefGoogle Scholar
  49. 49.
    T. Watase:J. Chem. Soc. Japan, 1933, vol. 54, pp. 110–32.Google Scholar
  50. 50.
    L. C. Browning, T. W. DeWitt, and P. H. Emmett:J. Am. Chem. Soc, 1950, vol. 72, pp. 4211–17.CrossRefGoogle Scholar
  51. 51.
    H. Seltz, H. J. McDonald, and C. Wells:AIME Trans., 1940, vol. 140, pp. 263- 78.Google Scholar
  52. 52.
    C. Schwarz and H. Uhlich:Arch. Eisenhuettenw., 1936, vol. 10, p. 11.Google Scholar
  53. 53.
    G. Naeser:Mitt. Kaiser Wilhelm Inst. Eisenforsch. Düsseldorf, 1934, vol. 16, pp. 207–10.Google Scholar
  54. 54.
    K. K. Kelley and E. G. King:U. S. Bur. Mines Bull. no. 592, 1961.Google Scholar
  55. 55.
    J. Mazur and W. Zacharko:ActaPhys. Polon., 1969, vol. 35, pp. 91–99 (in English).Google Scholar
  56. 56.
    S. Umino:Sci. Repts. Tohoku Imp. Univ., 1935, ser. 1, vol. 23, p. 665.Google Scholar
  57. 57.
    K. K. Kelley:U. S. Bur. Mines Bull. no. 584, 1960.Google Scholar
  58. 58.
    G. Borelius and S. Berglund:Ark. Fys., 1951, vol. 4, p. 173.Google Scholar
  59. 59.
    J. P. Sénateur, R. Fruchart, and A. Michel:C. R. Acad. Sci., Paris, 1962, vol. 255, p. 1615.Google Scholar
  60. 60.
    L. J. E. Hofer:U. S. Bur. Mines, Bull. no. 631, 1966.Google Scholar
  61. 61.
    0. Krisement:Ark. Fys., 1953, vol. 7, no. 27, pp. 353–55.Google Scholar
  62. 62.
    Mme. P. Lasage:Ann. Chim., 1961, vol. 6, no. 13, p. 623.Google Scholar
  63. 63.
    K. H. Jack:J. Iron Steel Inst., 1951, vol. 169, pp. 26–36.Google Scholar
  64. 64.
    A. L. Tsou, J. Nutting, and J. W. Menter:J. Iron Steel Inst., 1952, vol. 172, pp. 163–71.Google Scholar
  65. 65.
    J. Butler, P. Chollet, and C. Crussard:C. R. Acad. Sci, Paris, 1962, vol. 225, pp. 2961–63.Google Scholar
  66. 66.
    R. A. Arndt and A. C. Damask:Acta Met., 1964, vol. 12, p. 341.CrossRefGoogle Scholar

Copyright information

© The Metallurgical of Society of AIME 1972

Authors and Affiliations

  • John Chipman
    • 1
    • 2
  1. 1.Department of Metallurgy and Materials ScienceMassachusetts Institute of TechnologyCambridgeUSA
  2. 2.Inorganic Materials Research Division, Lawrence Radiation LaboratoryUniversity of CaliforniaBerkeleyUSA

Personalised recommendations