Mathematical Programming

, Volume 83, Issue 1–3, pp 291–311

On finding an envy-free Pareto-optimal division

  • J. H. Reijnierse
  • J. A. M. Potters


This paper describes an algorithm to find an (α-)envy-free Pareto-optimal division in the case of a finite number of homogeneous infinitely divisible goods and linear utility functions. It is used to find an allocation in the classical cake division problem that is almost Pareto-optimal and α-envy-free.


Envy-freeness Pareto-optimality Walras equilibrium 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Brams, S., Taylor, A., 1992. An envy free cake division algorithm, Mimeo, Department of Politics, New York University, New York.Google Scholar
  2. Ford, L., Fulkerson, D., 1956. Maximal flow through a network. Canadian Journal of Mathematics 8, 399–404.MATHMathSciNetGoogle Scholar
  3. Gale, D., 1960. The theory of linear economic models. McGraw-Hill, New York, pp. 281–287.Google Scholar
  4. Knaster, B., 1946. Sur le problème du partage pragmatique de H. Steinhaus. Annales de la Société Polonaise de Mathematique 19, 228–230.MathSciNetGoogle Scholar
  5. Steinhaus, H., 1948. The problem of fair division. Econometrica 16, 101–104.Google Scholar
  6. Steinhaus, H., 1949. Sur la division pragmatique. Econometrica 17 (suppl.), 315–319.CrossRefMathSciNetGoogle Scholar

Copyright information

© The Mathematical Programing, Society, Inc 1998

Authors and Affiliations

  • J. H. Reijnierse
    • 1
  • J. A. M. Potters
    • 1
  1. 1.Department of MathematicsUniversity of NijmegenNijmegenThe Netherlands

Personalised recommendations