Advertisement

Siberian Mathematical Journal

, Volume 40, Issue 3, pp 541–555 | Cite as

Global solvability of the multidimensional Navier-Stokes equations of a compressible nonlinearly viscous fluid. II

  • A. E. Mamontov
Article

Keywords

Constitutive Equation Convex Function Orlicz Space Energy Identity Global Solvability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. E. Mamontov, “Global solvability of the multidimensional Navier-Stokes equations of a compressible fluid with nonlinear viscosity. I,” Sibirsk. Mat. Zh.,40, No. 2, 408–420 (1999).Google Scholar
  2. 2.
    J. Simon, “Compact sets in the spaceL p(0,T; B),” Ann. Mat. Pura Appl., (IV)-VCXLVI, 65–96 (1987).Google Scholar
  3. 3.
    R. J. DiPerna and P. L. Lions, “Ordinary differential equations, transport theory and Sobolev spaces,” Invent. Math.,98, 511–547 (1989).zbMATHCrossRefGoogle Scholar
  4. 4.
    M. A. Krasnosel'skiî and Ya. B. Rutitskiî, Convex Functions and Orlicz Spaces [in Russian], Fizmatgiz, Moscow (1958).Google Scholar
  5. 5.
    A. E. Mamontov, Orlicz Spaces in the Existence problem of Global Solutions to Viscous Compressible Nonlinear Fluid Equations [Preprint, No. 2-96], Inst. Gidrodinamiki (Novosibirsk), Novosibirsk (1996).Google Scholar
  6. 6.
    A. Kufner, S. Fučik and O. John, Function Spaces, Academia, Prague (1977).zbMATHGoogle Scholar

Copyright information

© Kluwer Academic/Plenum Publishers 1999

Authors and Affiliations

  • A. E. Mamontov

There are no affiliations available

Personalised recommendations