, Volume 29, Issue 1–2, pp 262–306 | Cite as

Dynamical sources in information theory: Fundamental intervals and word prefixes

  • B. Vallée


A quite general model of source that comes from dynamical systems theory is introduced. Within this model, some basic problems of algorithmic information theory contexts are analysed. The main tool is a new object, the generalized Ruelle operator, which can be viewed as a “generating” operator for fundamental intervals (associated to information sharing common prefixes). Its dominant spectral objects are linked with important parameters of the source, such as the entropy, and play a central rôle in all the results.

Key Words

Information theory Dynamical systems Transfer operator Sources Entropy Fundamental intervals 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Avnaim, F., Boissonnat, J.-D., Devillers, O., Preparata, F., and Yvinec, M. Evaluation of a new method to compute signs of determinants. InProceedings of the Eleventh Annual ACM Symposium on Computational Geometry, 1995, pp. C16–C17. Full paper inAlgorithmica,17 (1997), 111–132.Google Scholar
  2. [2]
    Bedford, T., Keane, M., and Series, C., eds.Ergodic Theory, Symbolic Dynamics and Hyperbolic Spaces. Oxford University Press, 1991.Google Scholar
  3. [3]
    Beeler, M., Gosper, R. W., and Schroeppel, R. HAKMEM. Memorandum 239, Artificial Intelligence Laboratory, M.I.T., Feb. 1972.Google Scholar
  4. [4]
    Billingsley, P.Ergodic Theory and Information. Wiley, New York, 1965.zbMATHGoogle Scholar
  5. [5]
    Bogomolny, E. B., and Carioli, M. Quantum maps from transfer operators.Physica D 67 (1993), 88–112.zbMATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    Daudé, H., Flajolet, P., and Vallée, B. An average-case analysis of the Gaussian algorithm for lattice reduction.Combinatorics, Probability and Computing 6 (1997), 397–433.zbMATHCrossRefMathSciNetGoogle Scholar
  7. [7]
    Delange, H. Généralisation du Théorème d’Ikehara.Annales Scientifiques de l’Ecole Normale Supériore 71 (1954), 213–242.zbMATHMathSciNetGoogle Scholar
  8. [8]
    Devroye, L. A probabilistic analysis of the height of tries and of the complexity of triesort.Acta Informatica,21 (1984), 229–237.zbMATHCrossRefMathSciNetGoogle Scholar
  9. [9]
    Efrat, I. Dynamics of the continued fraction map and the spectral theory ofSL(2,Z).Inventiones Mathematicae 114 (1993), 207–218.zbMATHCrossRefMathSciNetGoogle Scholar
  10. [10]
    Faivre, C. Distribution of Lévy’s constants for quadratic numbers.Acta Arithmetica 61(1) (1992), 13–34.zbMATHMathSciNetGoogle Scholar
  11. [11]
    Fayolle, G., Flajolet, P., and Hofri, M. On a functional equation arising in the analysis of a protocol for a multi-accessbroadcast channel.Advances in Applied Probability 18 (1986), 441–472.zbMATHCrossRefMathSciNetGoogle Scholar
  12. [12]
    Flajolet, P., Gourdon, X., and Dumas, P. Mellin transforms and asymptotics: harmonic sums.Theoretical Computer Science 144(1–2) (1995), 3–58.zbMATHCrossRefMathSciNetGoogle Scholar
  13. [13]
    Flajolet, P., and Vallée, B. Continued fraction algorithms, functional operators and structure constants.Theoretical Computer Science 194 (1998), 1–34.zbMATHCrossRefMathSciNetGoogle Scholar
  14. [14]
    Grothendieck, A. Produits tensoriels topologiques et espaces nucléaires.Memoirs of the American Mathematical Society 16 (1955).Google Scholar
  15. [15]
    Grothendieck, A. La théorie de Fredholm.Bulletin de la Société Mathématique de France 84 (1956), 319–384.zbMATHMathSciNetGoogle Scholar
  16. [16]
    Hwang, H.-K. Théorèmes limites pour les structures combinatoires et les fonctions arithmétiques. Ph.D. thesis, École Polytechnique, Dec. 1994.Google Scholar
  17. [17]
    Kato, T.Perturbation Theory for Linear Operators. Springer-Verlag, New York, 1980.zbMATHGoogle Scholar
  18. [18]
    Knuth, D.E.Computers and Typesetting, MF: the program, Volume D. Addison-Wesley, Reading, MA, 1986.Google Scholar
  19. [19]
    Krasnoselskii, M.Positive Solutions of Operator Equations. Noordhoff, Groningen, 1964.Google Scholar
  20. [20]
    Lorch, E. R.Spectral Theory. Oxford University Press, New York, 1962.zbMATHGoogle Scholar
  21. [21]
    Mayer, D. H. On a ζ function related to the continued fraction transformation.Bulletin de la Société Mathématique de France 104 (1976), 195–203.zbMATHGoogle Scholar
  22. [22]
    Mayer, D. H. Spectral properties of certain composition operators arising in statistical mechanics,Communications in Mathematical Physics 68 (1979), 1–8.zbMATHCrossRefMathSciNetGoogle Scholar
  23. [23]
    Mayer, D. H. Continued fractions and related transformations. InErgodic Theory, Symbolic Dynamics and Hyperbolic Spaces, T. Bedford, M. Keane, and C. Series, eds. Oxford University Press, Oxford, 1991, pp. 175–222.Google Scholar
  24. [24]
    Mayer, D. H. Private communication.Google Scholar
  25. [25]
    Mischyavichyus, G. A. Estimate of the remainder in the limit theorem for the denominators of continued fractions. Litovskiǐ Matematičeskiǐ Sbornik21(3), (1987), 63–74.Google Scholar
  26. [26]
    Morita, T. Local limit theorem and distribution of periodic orbits of Lasota-Yorke transformations with infinite Markov partitions.Journal of the Mathematical Society of Japan 46(2) (1994), 309–343. Corrections, op. cit.47(1) (1997), 191–192.zbMATHMathSciNetGoogle Scholar
  27. [27]
    Philipp, W. Ein zentraler Grenzwertsatz mit Anwendungen auf die Zahlentheorie.Zeitschrift für Wahrscheinlichkeitstheorie 8 (1967), 195–203.Google Scholar
  28. [28]
    Pollicott, M. A complex Ruelle-Perron-Frobenius Theorem and two counterexamples.Ergodic Theory and Dynamical Systems 4 (1984), 135–146.zbMATHMathSciNetCrossRefGoogle Scholar
  29. [29]
    Ruelle, D.Thermodynamic Formalism. Addison-Wesley, Reading, MA, 1978.zbMATHGoogle Scholar
  30. [30]
    Ruelle, D.Dynamical Zeta Functions for Piecewise Monotone Maps of the Interval. Volume 4 of CRM Monograph Series. American Mathematical Society, Providence, RI, 1994.zbMATHGoogle Scholar
  31. [31]
    Schwartz, H. Composition operators inH p. Ph.D. Thesis, University of Toledo.Google Scholar
  32. [32]
    Shannon, C. A mathematical theory of communication.Bell Systems Technical Journal 27 (1948), 379–423, 623–656.MathSciNetzbMATHGoogle Scholar
  33. [33]
    Shapiro, J.Composition Operators and Classical Function Theory. Universitext: Tracts in Mathematics. Springer-Verlag, New York, 1993.Google Scholar
  34. [34]
    Shapiro, J. Compact composition operators on spaces of boundary regular holomorphic functions.Proceedings of the AMS 100 (1997), 49–57.CrossRefGoogle Scholar
  35. [35]
    Shapiro, J., and Taylor, P.D. Compact, nuclear, and Hilbert-Schmidt composition operators onH 2.Indiana University Mathematics Journal 23 (1973), 471–496.zbMATHCrossRefMathSciNetGoogle Scholar
  36. [36]
    Szpankowski, W., and Frieze, A. Greedy algorithms for the shortest common superstring that are asymptotically optimal. Preprint, 1998Google Scholar
  37. [37]
    Szpankowski, W., and Luczak, T. A suboptimal lossy date compression based on appoximate pattern matching.IEEE Transactions on Information Theory 43(5) (1997), 1439–1451.zbMATHCrossRefMathSciNetGoogle Scholar
  38. [38]
    Tenenbaum, G.Introduction à la théorie analytique des nombres, vol. 13. Institut Élie Cartan, Nancy, 1990.Google Scholar
  39. [39]
    Vallée, B. Opérateurs de Ruelle-Mayer généralisés et analyse des algorithmes d’Euclide et de Gauss.Acta Arithmetica 81(2) (1997), 101–144.zbMATHMathSciNetGoogle Scholar
  40. [40]
    Vallée, B. Algorithms for computing signs of 2×2 determinants: dynamics and average-case algorithms,Proceedings of the 8th Annual European Symposium on Algorithms, ESA ’97, pp. 486–499. LNCS 1284. Springer-Verlag, Berlin, 1997.Google Scholar
  41. [41]
    Welsh, D.Codes and Cryptography. Oxford Science Publications, Clarendon Press, Oxford, 1989.Google Scholar

Copyright information

© Springer-Verlag New York Inc 2001

Authors and Affiliations

  • B. Vallée
    • 1
  1. 1.GREYC, Université de CaenCaenFrance

Personalised recommendations