Journal of Low Temperature Physics

, Volume 142, Issue 3–4, pp 257–260

New results for superconductivity inκ-(BEDT-TTF)2Cu(NCS)2 when an applied magnetic field is aligned parallel to the conducting planes

  • C. Martin
  • K. Cho
  • I. Mihut
  • T. Coffey
  • C. C. Agosta
  • S. W. Tozer
  • H. A. Radovan
  • E. C. Palm
  • T. P. Murphy
  • J. A. Schlueter
Superconductivity And Other Properties
  • 28 Downloads

Abstract

Using a Tunnel Diode Oscillator technique, we have measured the effect of a parallel magnetic field on the in-plane rf penetration depths in organic [α-(BEDT-TTF)2NH4Hg(SCN)4 and k-(BEDT-TTF)2Cu(NCS)2] and heavy fermion (CeCoIn5) superconductors. We show that in this particular geometry, the effects due to vortex activity are minimized. The penetration depth is then governed by the density of superconducting carriers. It is shown in many experiments including rf penetration depth measurement that α-(BEDT-TTF)2NH4Hg(SCN)4 and CeCoIn5 have s-wave and d-wave pairing symmetries, respectively. The pairing symmetry of k-(BEDT-TTF)2-Cu(NCS)2, however, is still an unsolved matter, showing inconsistent results. In this paper, the penetration depth of k-(BEDT-TTF)2Cu(NCS)2 is shown to be more similar to α-(BEDT-TTF)2NH4Hg(SCN)4 than to CeCoIn5, suggesting the pairing is nodeless.

PACS numbers

74.70Kn 74.25.Dw 74.20.Rp 74.25.Nf 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y. Nakazawa and K. Kanoda,Physica (Amsterdam) 282C, 1897 (1997).ADSGoogle Scholar
  2. 2.
    S. Belin, K. Behnia, and A. Deluzet,Phys. Rev. Lett. 81, 4728 (1998).CrossRefADSGoogle Scholar
  3. 3.
    S. Lefebvre et al.,Phys. Rev. Lett. 85, 5420 (2000).CrossRefADSGoogle Scholar
  4. 4.
    D. R. Harshman et al.,Phys. Rev. Lett. 64, 1293 (1990).CrossRefADSGoogle Scholar
  5. 5.
    M. Lang et al.,Phys. Rev. Lett. 69, 1443 (1992).CrossRefADSGoogle Scholar
  6. 6.
    A. Carrington at al.,Phys. Rev. Lett. 83, 4172 (1999).CrossRefADSGoogle Scholar
  7. 7.
    K. Kanoda et al.,Phys. Rev. Lett. 65, 1271 (1990).CrossRefADSGoogle Scholar
  8. 8.
    L. P. Le et al.,Phys. Rev. Lett. 68, 1923 (1992).CrossRefADSGoogle Scholar
  9. 9.
    D. Achikir et al.,Phys. Rev. B 47, 11595 (1993).CrossRefADSGoogle Scholar
  10. 10.
    P. A. Mansky et al.,Phys. Rev. B 50, 15929 (1994).CrossRefADSGoogle Scholar
  11. 11.
    Y. Nakazawa et al.,Phys. Rev. B 52, 12890 (1995).CrossRefADSGoogle Scholar
  12. 12.
    R. Movshovich, et al.,Phys. Rev. Lett. 86, 5152 (2001).CrossRefADSGoogle Scholar
  13. 13.
    C. T. Van Degrift,Rev. Sci. Instrum. 46, 599 (1975).CrossRefADSGoogle Scholar
  14. 14.
    T. Coffey et al.,Rev. Sci. Instrum. 71, 4600 (2000).CrossRefADSGoogle Scholar
  15. 15.
    M. W. Coffey and J. R. Clem,Phys. Rev. Lett 67, 386 (1991).CrossRefADSGoogle Scholar
  16. 16.
    E. H. Brandt,Phys. Rev. Lett. 67, 2219 (1991).CrossRefADSGoogle Scholar
  17. 17.
    C. Martin et al.,Phys. Rev. B 71, 020503 (2005).CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc 2006

Authors and Affiliations

  • C. Martin
    • 1
  • K. Cho
    • 1
  • I. Mihut
    • 1
  • T. Coffey
    • 1
  • C. C. Agosta
    • 1
  • S. W. Tozer
    • 1
  • H. A. Radovan
    • 1
  • E. C. Palm
    • 1
  • T. P. Murphy
    • 1
  • J. A. Schlueter
    • 1
  1. 1.Department of PhysicsClark UniversityWorcester
  2. 2.The National High Magnetic Field LaboratoryTallahassee
  3. 3.Materials Science DivisionArgonne National LaboratoryArgonne

Personalised recommendations