Advertisement

Mathematical Notes

, Volume 66, Issue 4, pp 431–435 | Cite as

On an identity of Hilbert

  • Yu. V. Nesterenko
Article
  • 72 Downloads

Abstract

A simple proof of the polynomial identity used by Hilbert in the solution of the Waring problem is given. The proof is based on the continued fraction expansion of a certain formal hypergeometric series.

Key words

Waring problem Hilbert identity continued fraction hypergeometric series 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. E. Dickson,History of the Theory of Numbers, Vol. 2, Chelsea, New York (1971).Google Scholar
  2. 2.
    A. Hurwitz, “Über die Darstellung der ganzen Zahlen als Summen vonn ten Potenzen ganzer Zahlen,”Math. Ann.,65, No. 3, 424–427 (1908).CrossRefGoogle Scholar
  3. 3.
    D. Hilbert, “Beweis für Darstellbarkeit der ganzen Zahlen durch eine feste Anzahln-ter Potenzen (Waringsches Problem),”Math. Ann.,67, 281–300 (1909).CrossRefGoogle Scholar
  4. 4.
    F. Hausdorff, “Zur Hilbertschen Lözung des Waringschen Problems,”Math. Ann.,67, 301–305 (1909).CrossRefGoogle Scholar
  5. 5.
    E. Stridsberg, “Sur la démonstration de D. Hilbert du théorème de Waring,”Math. Ann.,72, No. 2, 145–152 (1912).CrossRefGoogle Scholar
  6. 6.
    A. Hurwitz, “Über definite Polynome,”Math. Ann.,73, 173–176 (1912).CrossRefGoogle Scholar
  7. 7.
    R. Remak, “Bemerkung zu Herrn Stridsbergs Beweis des Waringschen Theorems,”Math. Ann.,72, 153–156 (1912).CrossRefGoogle Scholar
  8. 8.
    G. Frobenius “Über den Stridsbergschen Beweis des Waringschen Satzes”,Sitzungsber. Akad. Wiss. Berlin, 666–670 (1912).Google Scholar
  9. 9.
    W. B. Jones and W. J. Thron,Continued Fractions, Addison-Wesley, Reading, Mass. (1980).Google Scholar
  10. 10.
    D. S. Kuznetsov,Special Functions [in Russian], Vysshaya Shkola, Moscow (1965).Google Scholar
  11. 11.
    E. M. Nikishin and V. N. Sorokin,Rational Approximations and Orthogonality [in Russian], Nauka, Moscow (1988).zbMATHGoogle Scholar

Copyright information

© Kluwer Academic/Plenum Publishers 2000

Authors and Affiliations

  • Yu. V. Nesterenko
    • 1
  1. 1.M. V. Lomonosov Moscow State UniversityMoscowUSSR

Personalised recommendations