Metallurgical Transactions B

, Volume 22, Issue 5, pp 711–716 | Cite as

Phase transformations during heating of llmenite concentrates

  • Suresh K. Gupta
  • V. Rajakumar
  • Paul Grieveson
Solid State Reaction

Abstract

llmenite concentrates were heated in argon and oxygen in the temperature range 700 °C to 1000 °C to study the behavior of the pseudorutile phase and other changes which occur. Pseudorutile does not persist in argon or oxygen in the temperature range studied. In argon at 700 °C, pseudorutile decomposes into hematite and rutile, while at 1000 °C, it combines with ilmenite to form ferrous-ferritic pseudobrookite solid solution. A new phase “Fe2O3-2TiO2” was identified as an intermediate product during the heating of ilmenite or pseudorutile in oxygen. This compound decomposes into hematite and rutile below 800 °C and to pseudobrookite and rutile above 800 °C. The sequence of reactions during the heating of ilmenite and pseudorutile in oxygen is proposed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Palmer:Am. J. Sci., 1909, vol. 28, pp. 353–56.CrossRefGoogle Scholar
  2. 2.
    R. Miller:Am. Mineral., 1945, vol. 30, pp. 65–75.Google Scholar
  3. 3.
    L.E. Lynd, H. Sigurdson, C.H. North, and W.W. Anderson:Trans. AIME Min. Eng., 1954, vol. 6, pp. 817–24.Google Scholar
  4. 4.
    M.G. Dyadchenko and A. Ya. Khatuntseva:Dokl. Akad. Nauk SSSR, 1960, vol. 132, pp. 435–38.Google Scholar
  5. 5.
    A.D. Bykov:Dokl. Akad. Nauk SSSR, 1964, vol. 156, pp. 567–70.Google Scholar
  6. 6.
    G. Teufer and A.K. Temple:Nature (London), 1966, vol. 211, pp. 179–81.CrossRefGoogle Scholar
  7. 7.
    I.E. Grey and A.F. Reid:Am. Mineral., 1975, vol. 60, pp. 898–906.Google Scholar
  8. 8.
    A.K. Temple:Economic Geology, 1966, vol. 61, pp. 695–714.CrossRefGoogle Scholar
  9. 9.
    P. Ramdohr:Abhandl.Preuss. Akad. Weiss. Jahrg. Math.-Nat. Kasse, 1939, vol. 14, pp. 12–13, Chem. Abstr., 1941, vol. 35, p. 3564.Google Scholar
  10. 10.
    J.L. Overholt, G. Vaux, and J.L. Rodda:Am. Mineral., 1950, vol. 35, pp. 117–19.Google Scholar
  11. 11.
    C.E. Curnov and L.G. Parry:Nature (London), 1954, vol. 174, p. 1101.CrossRefGoogle Scholar
  12. 12.
    M.D. Karkhanavala and A.C. Momin:Economic Geology, 1959, vol. 54, pp. 1095–1102.Google Scholar
  13. 13.
    D. Bhogeswara Rao and M. Rigaud:High Temp. Sci., 1974, vol. 6, pp. 323–41.Google Scholar
  14. 14.
    I.E. Grey and A.F. Reid:J. Solid State Chem., 1972, vol. 4, pp. 186–94.CrossRefGoogle Scholar
  15. 15.
    K. Borowiec and T. Rosenqvist:Scand. J. Metall., 1981, vol. 10, pp. 217–24.Google Scholar
  16. 16.
    S.K. Gupta, V. Rajakumar, and P. Grieveson:Metall. Trans. B, 1989, vol. 20B, pp. 735–45.CrossRefGoogle Scholar
  17. 17.
    S.K. Gupta, V. Rajakumar, and P. Grieveson:Can. Metall. Q., 1990, vol. 29, pp. 43–49.Google Scholar
  18. 18.
    D.G. Jones:Inst. Min. Metall. Trans., 1973, section C, vol. 82, pp. C186-C192.Google Scholar
  19. 19.
    M.H. Hey, P.G. Embrey, and E.E. Fejer:Mineral. Mag., 1969, vol. 37, pp. 349–56.CrossRefGoogle Scholar
  20. 20.
    D.H. Lindsley:1965 Annual Meetings—Program with Abstracts, Geological Society of America, Boulder, CO, 1965, p. 96.Google Scholar
  21. 21.
    S.E. Haggerty and D.H. Lindsley:Carnegie Institute of Washington Year Book, 1970, vol. 68, pp. 247–49.Google Scholar

Copyright information

© The Minerals, Metals & Material Society 1991

Authors and Affiliations

  • Suresh K. Gupta
    • 1
  • V. Rajakumar
    • 2
  • Paul Grieveson
    • 3
  1. 1.G.K. Williams Cooperative Research Center for Extractive Metallurgy, Department of Chemical EngineeringMelbourne UniversityParkvilleAustralia
  2. 2.Division of Mineral and Process EngineeringCommonwealth Scientific and Industrial Research OrganizationClaytonAustralia
  3. 3.Department of Materials, Imperial College of ScienceTechnology and MedicineLondonUK

Personalised recommendations