Advertisement

manuscripta mathematica

, Volume 92, Issue 1, pp 409–445 | Cite as

Quelques revêtements définis sur ℚ

  • Jean-Marc Couveignes
Article

Résumé

Nous décrivons des familles de revêtements de la sphère moins trois points et nous étudions leurs propriétés. En particulier, nous en donnons une description topologique et un modèle algébrique. Ces revêtements fournissent une illustration non triviale du théorème de Belyi et de ses conséquences dans le cas simple des courbes de genre zéro. Nous exhibons des exemples de mauvaise réduction et d’obstruction à la descente pour un revêtement.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographie

  1. [1]
    G. Anderson and Y. Ihara. Pro-1 branched coverings of ℙ1 and higher circular units, part 1.Ann. of Math., 128:271–293, 1988.CrossRefGoogle Scholar
  2. [2]
    G. Anderson and Y. Ihara. Pro-1 branched covering of ℙ1 and higher circular units, part 2.Int’l Math. J., 1:119–148, 1990.zbMATHCrossRefGoogle Scholar
  3. [3]
    A. O. L. Atkin and H.P.F. Swinnerton-Dyer. Modular forms over non-congruence subgroups. InProceedings of symposia in pure mathematics, volume 19. AMS, 1971.Google Scholar
  4. [4]
    W.L. Baily. On the theory of theta functions, the moduli of abelian varieties and the moduli of curves.Ann. of Math., 75:342–381, 1962.CrossRefGoogle Scholar
  5. [5]
    Sybilla Beckmann. Ramified primes in the field of moduli of branched coverings of curves.Journal of Algebra, 125:236–255, 1989.zbMATHCrossRefGoogle Scholar
  6. [6]
    G.V. Belyi. On Galois extensions of the maximal cyclotomic field.Izvestiya Ak. Nauk. SSSR, ser. mat., 43:2:269–276, 1979.Google Scholar
  7. [7]
    J. Bétréma and A. Zvonkin. Une vraie forme d’arbre planaire. InTAPSOFT’93, volume 668. Springer Verlag, 1993.Google Scholar
  8. [8]
    Bryan Birch. Noncongruence subgroups, covers and drawings. In Leila Schneps, editor,The Grothendieck Theory of Dessins d’Enfants, volume 200 ofLecture Notes in Math. Cambridge University Press, 1994.Google Scholar
  9. [9]
    Joan S. Birman.Braids, Links, and Mapping Class Groups. Princeton University Press, 1974.Google Scholar
  10. [10]
    I. Bouw. Quotients of tame fundamental groups of affine curves.Preprint of Universiteit Utrecht, 961, 1996.Google Scholar
  11. [11]
    Henri Cohen. Dessins d’enfant, a long explanation and some fun.sci.math.research, 1995.Google Scholar
  12. [12]
    Kevin Coombes and David Harbater. Hurwitz families and arithmetic Galois groups.Duke mathematical journal, 52:821–839, 1985.zbMATHCrossRefGoogle Scholar
  13. [13]
    J.-M. Couveignes and L. Granboulan. Dessins from a geometric point of view. In L. Schneps, editor,The Grothendieck theory of dessins d’enfants. Cambridge University Press, 1994.Google Scholar
  14. [14]
    Jean-Marc Couveignes, Calcul et rationalité de fonctions de Belyi en genre 0.Annales de l’Institut Fourier, 44(1):1–38, 1994.zbMATHGoogle Scholar
  15. [15]
    Jean-Marc Couveignes. À propos du théorème de Belyi.Journal de théorie des nombres de Bordeaux, 8:93–99, 1996.zbMATHGoogle Scholar
  16. [16]
    Jean-Marc Couveignes. Quelques, revêtements définis sur ℚ.Prépublications du Département d’Informatique de l’École Normale Supérieure, Mai 1995.Google Scholar
  17. [17]
    P. Debès and M. D. Fried. Nonrigid construction in Galois Theory.Pacific Journal of Math, 163:81–122, 1994.zbMATHGoogle Scholar
  18. [18]
    Pierre Debes and Michel Emsalem. On fields of moduli of curves. 1996.Google Scholar
  19. [19]
    P. Deligne and D. Mumford. The irreducibility of the space of curves of given genus.Pub. Math. IHES, pages 75–109, 1969.Google Scholar
  20. [20]
    Leila Schneps edt.The theory of Grothendieck’s dessins d’enfant. Cambridge University Press, 1994.Google Scholar
  21. [21]
    Michael D. Fried. Fields of definition of function fields and Hurwitz families-Groups as Galois groups.Comm. Alg., 5:17–82, 1977.zbMATHCrossRefGoogle Scholar
  22. [22]
    W. Fulton. Hurwitz schemes and irreducibility of moduli of algebraic curves.Ann. Math., pages 542–575, 1969.Google Scholar
  23. [23]
    L. Gerritzen, F. Herrlich, and M. van der Put. Stable n-pointed trees of projective line.Ind. Math., 50:131–163, 1988.Google Scholar
  24. [24]
    Louis Granboulan. Construction d’une extension régulière de ℚ(t).Experimental Math., pages 1–13, 1996.Google Scholar
  25. [25]
    Alexandre Grothendieck. Esquisse d’un programme.Non publié.Google Scholar
  26. [26]
    Alexandre Grothendieck.Revêtements étales et groupe fondamental. Springer Verlag, 1971.Google Scholar
  27. [27]
    L.V. Hansen.Braids and Coverings. Cambridge University Press, 1980.Google Scholar
  28. [28]
    David Harbater.Galois coverings of the arithmetic line, volume 1240 ofLect. Notes in Math., pages 165–195. Springer Verlag, 1987.Google Scholar
  29. [29]
    David Harbater. Abhyankar’s conjecture on Galois groups over curves.Invent. Math., 117:1–25, 1994.zbMATHCrossRefGoogle Scholar
  30. [30]
    A. Hurwitz. Über Riemann’sche Flächen mit gegebenem Verzweigungspunkten.Math. Annalen, 39:1–61, 1891.CrossRefGoogle Scholar
  31. [31]
    Yasutaka Ihara. Horizontal divisors on arithmetic surfaces associated with belyi uniformization. In L. Schneps, editor,The Grothendieck theory of dessins d’enfants. Cambridge University Press, 1994.Google Scholar
  32. [32]
    G. Malle and B. H. Matzat. Action of Braids. InInverse Galois Theory, chapter 3. 1993. Preprint. University of Heidelberg.Google Scholar
  33. [33]
    B. H. Matzat. Braids and decomposition groups. In Sinnou David, editor,Séminaire de théorie des nombres, Paris, 1991–1992. Birkhäuser, 1993.Google Scholar
  34. [34]
    B.H. Matzat.Konstructive Galoistheorie. Springer, 1987.Google Scholar
  35. [35]
    L. J. Mordell.Diophantine equations. Academic Press, 1969.Google Scholar
  36. [36]
    M. Raynaud.p-groupes et réducation semi-stable des courbes, pages 179–197. Birkhauser, 1990.Google Scholar
  37. [37]
    Leila Schneps. Dessins d’enfant on the riemann sphere. In Leila Schneps, editor,The Grothendieck Theory of Dessins d’Enfants, volume 200 ofLecture Notes in Math. Cambridge University Press, 1994.Google Scholar
  38. [38]
    Jean-Pierre Serre.Topics in Galois theory. Jones and Bartlett, 1992.Google Scholar
  39. [39]
    J. H. Silverman.The arithmetic of elliptic curves. Springer, 1986.Google Scholar
  40. [40]
    J. H. Silverman.Advanced Topics in the Arithmetic of Elliptic Curves. Springer, 1994.Google Scholar
  41. [41]
    André Weil. The field of definition of a variety.Amer. J. Math., 78:509–524, 1956.zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • Jean-Marc Couveignes
    • 1
  1. 1.Algorithmique Arithmétique ExpérimentaleUMR 9936 CNRS Université de BordeauxFrance

Personalised recommendations