manuscripta mathematica

, Volume 92, Issue 1, pp 143–152

On the meromorphic potential for a harmonic surface in a k-symmetric space

  • Josef Dorfmeister
  • Ian McIntosh
  • Franz Pedit
  • Hongyou Wu
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Black,Harmonic maps into homogeneous spaces, Pitman Research Notes in Math. 255, Longman, Harlow, 1991.Google Scholar
  2. 2.
    A. I. Bobenko,All constant mean curvature tori in R3,S 3,H 3 in terms of theta-functions, Math. Ann. 290 (1991), 209–245.MATHCrossRefGoogle Scholar
  3. 3.
    J. Bolton, F. Pedit & L. M. Woodward,Minimal surfaces and the affine Toda field model, J. reine angew. Math. 459 (1995), 119–150.MATHGoogle Scholar
  4. 4.
    F. E. Burstall,Harmonic tori in spheres and complex projective spaces, University of Bath Math. Preprint no. 93/01 (1993).Google Scholar
  5. 5.
    F. E. Burstall, D. Ferus, F. Pedit & U. Pinkall,Harmonic tori in symmetric spaces and commuting Hamiltonian systems on loop algebras, Ann. of Math. 138 (1993), 173–212.MATHCrossRefGoogle Scholar
  6. 6.
    F. E. Burstall & F. Pedit,Harmonic maps via Adler-Kostant-Symes theory, inHarmonic maps and integrable systems ed: A. P. Fordy & J. C. Wood, Aspects of Mathematics E23, Vieweg, Wiesbaden, 1994.Google Scholar
  7. 7.
    F. E. Burstall & F. Pedit,Dressing orbits of harmonic maps, GANG preprint IV.4, University of Massachusetts at Amherst (1994).Google Scholar
  8. 8.
    J. Dorfmeister, F. Pedit & H. Wu,Weierstrass type representation of harmonic maps into symmetric spaces, Communications in Analysis and Geometry, to appear.Google Scholar
  9. 9.
    J. Dorfmeister & H. Wu,Constant mean curvature surfaces and loop groups, J. Reine Angew. Math., 440 (1993), 43–76.MATHGoogle Scholar
  10. 10.
    I. McIntosh,Global solutions of the elliptic 2D periodic Toda lattice, Nonlinearity 7 (1994), 85–108.MATHCrossRefGoogle Scholar
  11. 11.
    I. McIntosh,Infinite dimensional Lie groups and the two-dimensional Toda lattice inHarmonic maps and integrable systems, ed: A. P. Fordy & J. C. Wood, Aspects of Mathematics E23, Vieweg, Wiesbaden, 1994.Google Scholar
  12. 12.
    A. Pressley & G. Segal,Loop groups, Oxford Mathematical Monographs, OUP, Oxford, 1986.MATHGoogle Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • Josef Dorfmeister
    • 1
  • Ian McIntosh
    • 2
  • Franz Pedit
    • 3
  • Hongyou Wu
    • 4
  1. 1.Department of MathematicsUniversity of KansasLawrence
  2. 2.School of Mathematical SciencesUniversity of BathBath
  3. 3.Department of MathematicsUniversity of MassachusettsAmherst
  4. 4.Department of MathematicsNorthern Illinois UniversityDeKalb

Personalised recommendations