Journal of Nonlinear Science

, Volume 7, Issue 2, pp 129–176

Robust heteroclinic cycles

  • M. Krupa
Article

Summary

One phenomenon in the dynamics of differential equations which does not typically occur in systems without symmetry is heteroclinic cycles. In symmetric systems, cycles can be robust for symmetry-preserving perturbations and stable. Cycles have been observed in a number of simulations and experiments, for example in rotating convection between two plates and for turbulent flows in a boundary layer. Theoretically the existence of robust cycles has been proved in the unfoldings of some low codimension bifurcations and in the context of forced symmetry breaking from a larger to a smaller symmetry group. In this article we review the theoretical and the applied research on robust cycles.

Key words

heteroclinic cycles robust symmetry stability bifurcation simulation experiment 

MSC numbers

58F12 58F14 34-02 34C37 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. D. Alexander, I. Kan, J. A. Yorke, and Zhiping You. Riddled Basins.Int. J. Bifur. Chaos 2 (1992), 795–813.MATHCrossRefGoogle Scholar
  2. [2]
    D. Armbruster. More on structurally stable H-orbits, inProceedings of the International Conference on Bifurcation Theory and Its Numerical Analysis, Li Kaitai et al., eds., Xian Jiaotong University Press, Xian, China (1989).Google Scholar
  3. [3]
    D. Armbruster and P. Chossat. Heteroclinic orbits in a spherically invariant system.Physica D 50 (1991), 155–176.MATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    D. Armbruster, J. Guckenheimer, and P. Holmes. Heteroclinic cycles and modulated waves in systems with O(2) symmetry.Physica D 29 (1988), 257–282.MATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    D. Armbruster, J. Guckenheimer, and P. Holmes. Kuramoto-Sivashinsky dynamics on the center unstable manifold.SIAM J. Appl. Math. 49 (1989), 676–691.MATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    D. Armbruster and E. Ihrig. Topological constraints for explicit symmetry breaking.Lectures in Applied Mathematics 29 (1993), 37–47.MathSciNetGoogle Scholar
  7. [7]
    D. G. Aronson, S. A. van Gils, and M. Krupa. Homoclinic twist bifurcations with ℤ2 symmetry.J. Nonlin. Sci. 4 (1994), 195–219.MATHCrossRefGoogle Scholar
  8. [8]
    P. Ashwin, J. Buescu, and I. N. Stewart. From attractor to a chaotic saddle: a tale of transverse instability.Nonlinearity 9 (1996), 703–737.MATHCrossRefMathSciNetGoogle Scholar
  9. [9]
    P. Ashwin and P. Chossat. Attractors for robust heteroclinic sets with a continuum of connections. PreprintINLN Université de Nice 96.6 (1996).Google Scholar
  10. [10]
    N. Aubry, P. Holmes, J. Lumley, and E. Stone. The dynamics of coherent structures in the wall region of a turbulent boundary layer.J. Fluid Mech. 192 (1988), 115–173.MATHCrossRefMathSciNetGoogle Scholar
  11. [11]
    G. Berkooz, P. Holmes, and J. L. Lumley. The proper orthogonal decomposition in the analysis of turbulent flows.Ann. Rev. Fluid Mech. 25 (1993), 539–575.CrossRefMathSciNetGoogle Scholar
  12. [12]
    G. Berkooz, P. Holmes, and J. L. Lumley. Intermittent dynamics in simple models of the turbulent wall layer.J. Fluid Mech. 230 (1991), 75–95.MATHCrossRefMathSciNetGoogle Scholar
  13. [13]
    G. Berkooz, P. Holmes, and J. L. Lumley. On the relation between low-dimensional models and the dynamics of coherent structures in the turbulent wall layer.Theoret. Comput. Fluid Dyn. 4 (1993), 255–269.MATHCrossRefGoogle Scholar
  14. [14]
    W. Brannath. Heteroclinic networks on the simplex.Nonlinearity 7 (1994), 1367–1384.MATHCrossRefMathSciNetGoogle Scholar
  15. [15]
    F. M. Busse. Transition to turbulence in Rayleigh-Bènard convection. InHydrodynamic Instabilities and the Transition to Turbulence (H. L. Swinney and J. P. Gollub eds.) Springer-Verlag, New York (1981), 97–137.Google Scholar
  16. [16]
    F. M. Busse. Transition to turbulence via the statistical limit cycle route. InChaos and Order in Nature (H. Haken ed.), Springer-Verlag, New York (1981).Google Scholar
  17. [17]
    F. M. Busse. Transition to turbulence via the statistical limit cycle route. InTurbulence and Chaotic Phenomena in Fluids (T. Tatsumi ed.), North-Holland, Amsterdam (1984).Google Scholar
  18. [18]
    F. M. Busse and R. M. Clever. Nonstationary convection in a rotating system.Recent Development in Theoretical and Experimental Fluid Mechanics (U. Müller, K. G. Roessner, and B. Schmidt, eds.) Springer-Verlag, New York (1979), 376–385.Google Scholar
  19. [19]
    F. M. Busse and K. E. Heikes. Convection in a rotating layer: A simple case of turbulence.Science 208 (1980), 173–175.CrossRefGoogle Scholar
  20. [20]
    S. Campbell and P. Holmes. Heteroclinic cycles and modulated traveling waves in a system with D4 symmetry.Physica D 59 (1992), 52–78.MATHCrossRefMathSciNetGoogle Scholar
  21. [21]
    S. Campbell and P. Holmes. Bifurcation from O(2) symmetric heteroclinic cycles with three interacting modes.Nonlinearity 4 (1991), 697–726.MATHCrossRefMathSciNetGoogle Scholar
  22. [22]
    T. Clune. Thesis, Pattern selection in convective systems. University of California-Berkeley, Berkeley, 1993.Google Scholar
  23. [23]
    T. Clune and E. Knobloch. Pattern selection in three-dimensional magnetoconvection.Physica D 74, 151–176 (1994).MATHCrossRefGoogle Scholar
  24. [24]
    P. Chossat, M. Krupa, I. Melbourne, and A. Scheel. Transverse bifurcations of homoclinic cycles. To appear inPhysica D (1996).Google Scholar
  25. [25]
    P. Chossat. Forced reflectional symmetry breaking of an O(2) symmetric homoclinic cycle.Nonlinearity 6 723–731 (1993).MATHCrossRefMathSciNetGoogle Scholar
  26. [26]
    P. Chossat and M. J. Field. Geometric analysis of the effect of symmetry breaking perturbations on an O(2) invariant homoclinic cycle. InNormal Forms and Homoclinic Chaos (W. F. Langford and W. Nagata eds.) Fields Institute Communications, American Mathematical Society, Providence, RI (1995), Vol. 4, pp. 21–42.Google Scholar
  27. [27]
    M. Dellnitz, M. J. Field, M. Golubitsky, A. Hohmann, and J. Ma. Cycling chaos.Int. J. Bifur. Chaos 5(4) (1995) 1243–1247.MATHCrossRefMathSciNetGoogle Scholar
  28. [28]
    B. Dionne, M. J. Field, and M. Krupa. Heteroclinic cycles in problems with wreath product symmetry. In preparation.Google Scholar
  29. [29]
    B. Dionne, M. Golubitsky, and I. Stewart. Coupled cells with internal symmetries. Part I: wreath products.Nonlinearity 9 (1996), 559–574.MATHCrossRefMathSciNetGoogle Scholar
  30. [30]
    M. J. Field. Equivariant dynamical systems.Trans. Am. Math. Soc. 259 (1980), 185–205.MATHCrossRefMathSciNetGoogle Scholar
  31. [31]
    M. J. Field. Equivariant bifurcation theory and symmetry breaking.J. Dyn. Diff. Eqs. 1 (1989), 369–421.MATHCrossRefMathSciNetGoogle Scholar
  32. [32]
    M. J. Field. Bifurcation and symmetry breaking from a homoclinic cycle with zero eigenvalues. In preparation.Google Scholar
  33. [33]
    M. J. Field.Lectures on Bifurcations, Dynamics and Symmetry, Res. Notes in Math. 356, Addison-Wesley-Longman, Harlow, Essex (1996). [Appendix A coauthored with Peng].MATHGoogle Scholar
  34. [34]
    M. J. Field and R. W. Richardson. Symmetry breaking and branching patterns in equivariant branching theory II.Arch. Rat. Mech. Anal. 120 (1992), 147–190.MATHCrossRefMathSciNetGoogle Scholar
  35. [35]
    M. J. Field and J. W. Swift. Stationary bifurcation to limit cycles and heteroclinic cycles.Nonlinearity 4 (1991), 1001–1043.MATHCrossRefMathSciNetGoogle Scholar
  36. [36]
    M. J. Field and J. W. Swift. The Hopf bifurcation and the Hopf fibration.Nonlinearity 7 (1994), 385–402.MATHCrossRefMathSciNetGoogle Scholar
  37. [37]
    R. Friedrich and H. Haken. Static, wavelike, and chaotic thermal convection in spherical geometries.Phys. Rev. A 34 (1986), 2100–2120.CrossRefGoogle Scholar
  38. [38]
    A. Gaunersdorfer. Time averages for heteroclinic attractors.SIAM J. Appl. Math. 52 (1992), 1476–1489.MATHCrossRefMathSciNetGoogle Scholar
  39. [39]
    H. F. Goldstein, E. Knobloch, and M. Silber. Planform selection in rotating convection: Hexagonal symmetry.Phys. Rev. A 46 (1992), 4755–4761.CrossRefGoogle Scholar
  40. [40]
    M. Golubitsky, I. N. Stewart, and D. G. Schaeffer.Singularities and Groups in Bifurcation Theory, Vol. II, Appl. Math. Sci. Ser.69, Springer-Verlag, New York (1988).MATHGoogle Scholar
  41. [41]
    J. Guckenheimer and P. Holmes. Structurally stable heteroclinic cycles.Math. Proc. Cambridge Phil. Soc. 103 (1988), 189–192.MATHMathSciNetGoogle Scholar
  42. [42]
    J. Guckenheimer and P. Worfolk. Instant chaos.Nonlinearity 5 (1992), 1211–1222.MATHCrossRefMathSciNetGoogle Scholar
  43. [43]
    P. Guyard. Interaction de modes dans les problèmes de bifurcation avec symétrie sphérique. Thesis, Université de Nice, 1994.Google Scholar
  44. [44]
    J. Hofbauer. A general cooperation theorem for hypercycles.Monatsh. Math. 91 (1991), 233–240.CrossRefMathSciNetGoogle Scholar
  45. [45]
    J. Hofbauer. Heteroclinic cycles on the simplex.Proc. Int. Conf. Nonlinear Oscillations, Janos Bolyai Math. Soc., Budapest (1987).Google Scholar
  46. [46]
    J. Hofbauer. Heteroclinic cycles in ecological differential equations.Proc. Equadiff 8., the Czech-Slovak Conference on Differential Equations and Their Applications. (P. Brunovsky and M. Medved eds.) Tatra Mountains Mathematical Publications, Bratislava (1994), 105–116.Google Scholar
  47. [47]
    J. Hofbauer and K. Sigmund.The Theory of Evolution and Dynamical Systems. Camb. Univ. Press, Cambridge (1988).MATHGoogle Scholar
  48. [48]
    A. Homburg, H. Kokubu, and M. Krupa. The cusp horseshoe and its bifurcations in the unfolding of an inclination-flip homoclinic orbit.Ergodic Theory and Dynamical Systems 14 (1994), 667–693.MATHCrossRefMathSciNetGoogle Scholar
  49. [49]
    C. Hou. Thesis, Symmetry breaking and heteroclinic cycles. University of Houston, Houston, 1995.Google Scholar
  50. [50]
    C. Hou and M. Golubitsky. An example of symmetry breaking to heteroclinic cycles.J. Diff. Eqs. To appear.Google Scholar
  51. [51]
    Y. Hu, R. E. Ecke, and G. Ahlers. Time and length scales in rotating Rayleigh-Bénard convection.Phys. Rev. Lett. 74 (1995), 5040–5043.CrossRefGoogle Scholar
  52. [52]
    T. Hungerford.Algebra,GTM 73, Springer-Verlag, New York (1980).MATHGoogle Scholar
  53. [53]
    J. M. Hyman and B. Nicolaenko. The Kuramoto-Sivashinsky equation: A bridge between PDE’s and dynamical systems.Physica D 18 (1986), 113–126.MATHCrossRefMathSciNetGoogle Scholar
  54. [54]
    J. M. Hyman, B. Nicolaenko, and S. Zaleski. Order and complexity in the Kuramoto-Sivashinsky model of weakly turbulent interfaces. ReportLA-UR-86-1947, LANL, Los Alamos NM (1986).Google Scholar
  55. [55]
    I. G. Kevrikedis, B. Nicolaenko, and J. C. Scovel. Back in the saddle again: A computer assisted study of the Kuramoto-Sivashinsky equation.SIAM J. Appl. Math. 21 (1990), 760–790.CrossRefGoogle Scholar
  56. [56]
    V. Kirk and M. Silber. A competition between heteroclinic cycles.Nonlinearity 7 (1994), 1605–1621.MATHCrossRefMathSciNetGoogle Scholar
  57. [57]
    G. Kirlinger. Permanence in Lotka-Volterra equations: Linked predator-prey systems.Math. Biosci. 82 (1986), 165–191.MATHCrossRefMathSciNetGoogle Scholar
  58. [58]
    S. J. Kline, W. C. Reynolds, W. C. Schraub, and P. W. Rundstadler. The structure of turbulent boundary layers.J. Fluid Mech. 30 (1990), 741–773.CrossRefGoogle Scholar
  59. [59]
    E. Knobloch and M. Silber. Hopf bifurcation with ℤ4 × Z4×T2 symmetry.Bifurcation and Symmetry (E. Allgower et al. eds.) ISNM 104, Birkhauser, Basel (1992), 241–252.Google Scholar
  60. [60]
    E. Knobloch and M. Silber. Oscillatory convection in a rotating layer.Physica D 94 (1993), 213–232.CrossRefMathSciNetGoogle Scholar
  61. [61]
    M. Krupa and I. Melbourne. Asymptotic stability of heteroclinic cycles in systems with symmetry.Erg. Th. Dyn. Sys. 15 (1995), 121–147.MATHMathSciNetGoogle Scholar
  62. [62]
    M. Krupa and I. Melbourne. Nonasymptotically stable attractors in O(2) mode interactions. InNormal Forms and Homoclinic Chaos. (W.F. Langford and W. Nagata eds.) Fields Institute Communications, American Mathematical Society, Providence, RI (1995), Vol. 4, pp. 219–232.Google Scholar
  63. [63]
    M. Krupa, I. Melbourne, and A. Scheel. Stability and bifurcations of heteroclinic cycles in systems with symmetry. In preparation.Google Scholar
  64. [64]
    R. Lauterbach and S. Maier-Paape. Heteroclinic cycles for reaction diffusion systems by forced symmetry breaking.Trans. Am. Math. Soc., submitted.Google Scholar
  65. [65]
    R. Lauterbach, S. Maier-Paape, and Ernst Reißner. A systematic study of heteroclinic cycles in dynamical systems with broken symmetry.Proc. Roy. Soc. Edinburgh 126A (1996), 885–909.Google Scholar
  66. [66]
    R. Lauterbach and M. Roberts. Heteroclinic cycles in dynamical systems with broken spherical symmetry.J. Diff. Eq. 100 (1992), 22–48.MATHCrossRefMathSciNetGoogle Scholar
  67. [67]
    X. B. Lin. Using Melnikov’s method to solve Shilnikov’s problems.Proc. Roy. Soc. Edinburgh 116A (1990), 295–325.Google Scholar
  68. [68]
    R. M. May and W. Leonard. Nonlinear aspects of competition between three species.SIAM J. Appl. Math. 29 (1975), 243–252.CrossRefMATHMathSciNetGoogle Scholar
  69. [69]
    I. Melbourne. Intermittency as a codimension three phenomenon.Dyn. Diff. Eqs. 1 (1989), 347–367.MATHCrossRefMathSciNetGoogle Scholar
  70. [70]
    I. Melbourne. An example of a nonasymptotically stable attractor.Nonlinearity 4 (1991), 835–844.MATHCrossRefMathSciNetGoogle Scholar
  71. [71]
    I. Melbourne, P. Chossat, and M. Golubitsky. Heteroclinic cycles involving periodic solutions in mode interactions with O(2) symmetry.Proc. Roy. Soc. Edinburgh 113A (1989), 315–345.MathSciNetGoogle Scholar
  72. [72]
    M. R. E. Proctor and C. A. Jones. The interaction of two spatially resonant patterns in thermal convection. Part 1. Exact 1:2 resonance.J. Fluid Mech. 188 (1988), 301–335.MATHCrossRefMathSciNetGoogle Scholar
  73. [73]
    G. L. dos Reis. Structural stability of equivariant vector fields.An. Acad. Brasil. Ciênc. 50 (1978), 273–176.Google Scholar
  74. [74]
    G. L. dos Reis. Structural stability of equivariant vector fields on two manifolds.Trans. Am. Math. Soc. 283 (1984), 633–43.MATHCrossRefGoogle Scholar
  75. [75]
    J. W. Reyn. A stability criterion for separatrix polygons in the plane.Nieuw Arch. Wisk. 27 (1979), 238–254.MATHMathSciNetGoogle Scholar
  76. [76]
    A. M. Rucklidge and P. C. Matthews. Shearing instability in magnetoconvection.Double-Diffusive Convection (A. Brandt and H. J. S. Fernando eds.) American Geophysical Union, Washington, DC (1995), 171–184.Google Scholar
  77. [77]
    A. M. Rucklidge and P. C. Matthews. Analysis of the shearing instability in nonlinear analysis and magnetoconvection.Nonlinearity 9 (1996).Google Scholar
  78. [78]
    B. Sandstede and A. Scheel. Forced symmetry breaking of homoclinic cycles.Nonlinearity 8 (1995), 333–365.MATHCrossRefMathSciNetGoogle Scholar
  79. [79]
    S. Sanghi and N. Aubry. Mode interaction models for near-wall turbulence.J. Fluid Mech. 247 (1993), 455–488.MATHCrossRefMathSciNetGoogle Scholar
  80. [80]
    B. Sandstede. Verzweigungstheorie homokliner Verdopplungen. Report No. 7, Institut für Angewandte Analysis und Stochastik, Berlin (1993).MATHGoogle Scholar
  81. [81]
    A. Scheel. Bifurcation d’orbites périodiques à partir de cycles homoclines en présence de symétrie.Memoire de DEA. Université de Nice, Nice (1991).Google Scholar
  82. [82]
    A. Scheel and P. Chossat. Bifurcation d’orbites pèriodiques á partir d’un cycle homocline symètrique.C. R. Acad. Sci. Paris 314 (1992), 49–54.MATHMathSciNetGoogle Scholar
  83. [83]
    Z. S. She and B. Nicolaenko. Temporal intermittency and turbulence production in the Kolmogorov flow.Topological Fluid Mechanics (H. K. Moffat ed.), Cambridge University Press, Cambridge256 (1990).Google Scholar
  84. [84]
    M. Silber and E. Knobloch. Hopf bifurcation on a square lattice.Nonlinearity 4 (1991), 1063–1106.MATHCrossRefMathSciNetGoogle Scholar
  85. [85]
    M. Silber, H. Riecke, and L. Kramer. Symmetry-breaking Hopf bifurcation in anisotropic systems.Physica D 61 (1992), 260–272.MATHCrossRefMathSciNetGoogle Scholar
  86. [86]
    A. M. Soward. Bifurcation and stability of finite amplitude convection in a rotating layer.Physica D 14 (1985), 227–241.MATHCrossRefMathSciNetGoogle Scholar
  87. [87]
    A. Steindl. Hopf/steady-state mode interaction for a fluid conveying elastic tube with D4 symmetric support.International Series of Numerical Mathematics 104 (1992), 305–315.MathSciNetGoogle Scholar
  88. [88]
    A. Steindl. In preparation.Google Scholar
  89. [89]
    A. Steindl. Heteroclinic cycles in the dynamics of a fluid conveying tube. Proceedings of ICIAM/GAMM 1995. Special issues ofZeitschrift für Angewandte Mathematik und Mechanik, issue4 (Edwin Kreuzer and Oskar Mahrenholtz eds.) Academie Verlag, Berlin (1996), 529–532.Google Scholar
  90. [90]
    S. Sternberg. On the structure of local homeomorphisms of Euclideann-space, II.Am. J. Math. 80 (1958), 623–631.MATHCrossRefMathSciNetGoogle Scholar
  91. [91]
    E. Stone and P. Holmes. Noise induced intermittency in a model of turbulent boundary layer.Physica D 37 (1989), 20–32.MATHCrossRefMathSciNetGoogle Scholar
  92. [92]
    E. Stone and P. Holmes. Random perturbations of heteroclinic attractors,SIAM J. Appl. Math 50 (1990), 726–743.MATHCrossRefMathSciNetGoogle Scholar
  93. [93]
    E. Stone and P. Holmes. Unstable fixed points, heteroclinic cycles, and exponential tails in turbulence production.Phys. Lett. A 155 (1991), 29–41.CrossRefMathSciNetGoogle Scholar
  94. [94]
    J. W. Swift. Hopf bifurcation with the symmetry of the square.Nonlinearity 1 (1988) 333–377.MATHCrossRefMathSciNetGoogle Scholar
  95. [95]
    J.W. Swift. Convection in a rotating fluid layer.Contemporary Mathematics 28, AMS (1984), 435–448.MathSciNetGoogle Scholar
  96. [96]
    J. W. Swift and E. Barany. Chaos in the Hopf bifurcation with tetrahedral symmetry: Convection in a rotating fluid with low Prandtl number.Eur. J. Mech., B/Fluids 10 (1991), 99–104.MathSciNetGoogle Scholar
  97. [97]
    Y. Tu and M. C. Cross. Chaotic domain structure in rotating convection.Phys. Rev. Lett. 69 (1992), 2515–2518.CrossRefGoogle Scholar
  98. [98]
    P. Worfolk. An equivariant, inclination-flip, heteroclinic bifurcation.Nonlinearity 9 (1996), 631–647.MATHCrossRefMathSciNetGoogle Scholar
  99. [99]
    F. Takens. Heteroclinic attractors: time averages and moduli of topological conjugacy.Bol. Soc. Bras. Mat. 25 (1994), 107–120.MATHCrossRefMathSciNetGoogle Scholar
  100. [100]
    F. Zhong and R. Ecke. Pattern dynamics and heat transport in rotating Rayleigh-Bénard convection.Chaos 2 (1992), 163–171.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag New York Inc 1997

Authors and Affiliations

  • M. Krupa
    • 1
  1. 1.Institut für Angewandte und Numerische MathematikTU WienWienAustria

Personalised recommendations