manuscripta mathematica

, Volume 94, Issue 1, pp 303–317

Subextremal curves

  • Scott Nollet
Article

Abstract

In this paper we improve known bounds on the Rao function for non-extremal curves, as well extending these results to nonzero characteristic. These improved bounds are shown to be sharp, and the curves which yield sharpness are classified. Schlesinger’s notion of the spectrum of a curve is introduced and used to streamline proofs.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Banica, C. and Forster, O.: Multiplicity Structures on Space Curves, Contemporary Mathematics58, 47–64 (1986)MathSciNetGoogle Scholar
  2. [2]
    Ellia, Ph.: On the cohomology of projective space curves, Bolletino della U.M.I. 9-A, 593–607 (1995)MathSciNetGoogle Scholar
  3. [3]
    Gruson, L. and Peskine, C.: Genre des Courbes de L’espace projectif, Springer LNM687, 31–59 (1977)MathSciNetGoogle Scholar
  4. [4]
    Hartshorne, R.: Algebraic Geometry (Graduate Texts in Mathematics 52) Springer-Verlag, Berlin, Heidelberg and New York, 1977Google Scholar
  5. [5]
    Hartshorne, R.: Genus of Space Curves, Annali dell’ Università di Ferrara, Sezione VII-Sciencze Matematiche40, 207–233 (1994)MathSciNetGoogle Scholar
  6. [6]
    Liebling, R.: Classification of Space Curves using Initial Ideals (U.C. Berkeley PhD thesis) 1996Google Scholar
  7. [7]
    Martin-Deschamps, M. and Perrin, D.: Sur la Classification des Courbes Gauches (Astérisque 184–185) 1990Google Scholar
  8. [8]
    Martin-Deschamps, M. and Perrin, D.: Sur les bornes du module de Rao, C.R. Acad. Sci. Paris, t. 317, Série I, 1159–1162 (1993)MATHMathSciNetGoogle Scholar
  9. [9]
    Martin-Deschamps, M. and Perrin, D.: Le Schéma de Hilbert des Courbes Gauches localement Cohen-Macaulay n’est (presque) jamais réduit, Ann. Sci. Éc. Norm. Sup., 4e série, t. 29, 757–785 (1997)MathSciNetGoogle Scholar
  10. [10]
    Migliore, J.: Geometric Invariants of Space Curves, Journal of Algebra 99, 548–572 (1986)MATHCrossRefMathSciNetGoogle Scholar
  11. [11]
    Nollet, S. The Hilbert Schemes of Degree Three Curves, to appear, Ann. Sci. Éc. Norm. Sup.Google Scholar
  12. [12]
    Okonek, C. and Spindler, H.: Das Spektrum Trosionfreier Garben II, Springer LNM 1165, 211–234 (1985)MathSciNetGoogle Scholar
  13. [13]
    Schlesinger, E.: The Spectrum of Projective Curves (U.C. Berkeley PhD thesis) 1996Google Scholar

Copyright information

© Springer-Verlag 1997

Authors and Affiliations

  • Scott Nollet
    • 1
  1. 1.University of BarcelonaBarecelonaSpain

Personalised recommendations