manuscripta mathematica

, Volume 93, Issue 1, pp 499–513

On outer automorphism groups of coxeter groups

  • R. B. Howlett
  • P. J. Rowley
  • D. E. Taylor
Article

Summary

It is shown that the outer automorphism group of a Coxeter groupW of finite rank is finite if the Coxeter graph contains no infinite bonds. A key step in the proof is to show that if the group is irreducible andΠ1 andΠ2 any two bases of the root system ofW, thenΠ2 = ±ωΠ1 for some ω εW. The proof of this latter fact employs some properties of the dominance order on the root system introduced by Brink and Howlett.

Keywords

Coxeter group Automorphism group Outer automorphism 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bourbaki N. (1968); Groupes et algèbres de Lie. Chapitres 4, 5 et 6. Hermann, Paris.MATHGoogle Scholar
  2. Brink B., Howlett R.B. (1993): A finiteness property and an automatic structure for Coxeter groups. Math. Ann.,296, 179–190.MATHCrossRefGoogle Scholar
  3. Deodhar V.V. (1982): On the root system of a Coxeter group. Communications in Algebra,10, 611–630.MATHCrossRefGoogle Scholar
  4. Deodhar, V.V. (1989): A note on subgroups generated by reflections in Coxeter groups. Arch. Math.,53, 543–546.MATHCrossRefGoogle Scholar
  5. Dyer M. (1990): Reflection subgroups of Coxeter systems. Journal of Algebra,135, 57–73.MATHCrossRefGoogle Scholar
  6. Humphreys J.E. (1990): Reflection Groups and Coxeter Groups, (Cambridge studies in advanced mathematics, vol. 29). Cambridge University Press.Google Scholar
  7. James L.D. (1988): Complexes and Coxeter groups — operations and outer automorhisms. Journal of Algebra,113, 339–345.MATHCrossRefGoogle Scholar
  8. Kac V.G. (1990); Infinite Dimensional Lie Algebras (third edition). Cambridge University Press.Google Scholar
  9. Krammer D. (1994): The conjugacy problem for Coxeter groups. Dissertation, Universiteit Utrecht.Google Scholar
  10. Maxwell G.A. (1982): Sphere packings and hyperbolic reflection groups. Journal of Algebra,79, 78–97.MATHCrossRefGoogle Scholar
  11. Tits J. (1988): Sur le groupe des automorphismes de certains groupes de Coxeter. Journal of Algebra,113, 346–357.MATHCrossRefGoogle Scholar
  12. Tits J. (1961): Groupes et géométries de Coxeter. Technical report, Institut des Hautes Études Scientifiques.Google Scholar
  13. Vinberg E.B. (1971): Discrete linear groups generated by reflections. Math. USSR-Izvestiya5, 1083–1119.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1997

Authors and Affiliations

  • R. B. Howlett
    • 1
  • P. J. Rowley
    • 2
  • D. E. Taylor
    • 1
  1. 1.School of Mathematics and StatisticsUniversity of SydneyAustralia
  2. 2.Department of MathematicsUniversity of Manchester Institute of Science and TechnologyManchesterUnited Kingdom

Personalised recommendations