manuscripta mathematica

, Volume 93, Issue 1, pp 283–299

Hölder continuity of minimizers of functionals with variable growth exponent

  • Valeria Chiadò Piat
  • Alessandra Coscia
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    ACERBI E., FUSCO N.: Partial regularity under anisotropic (p, q) growth conditions.J. Diff. Equations. 107 (1994), 46–67.MATHCrossRefGoogle Scholar
  2. [2]
    ACERBI E., FUSCO N.: A transmission problem in the calculus of variations.Calc. Var. 2 (1994), 1–16.MATHCrossRefGoogle Scholar
  3. [3]
    ALKHUTOV YU. A.: The Hölder continuity of certain nonlinear elliptic equations with nonstandard growth condition.Differentsial’nye Uravneniya (1997) (to appear).Google Scholar
  4. [4]
    BOCCARDO, L., MARCELLINI, P., SBORDONE, C.: L∞-regularity for a variational problem with sharp non standard growth conditions.Boll. Un. Mat. Ital. (7)4-A (1990), 219–225.Google Scholar
  5. [5]
    BREZIS H.:Analyse fonctionnelle. Théorie et applications. Masson, Paris, 1983.MATHGoogle Scholar
  6. [6]
    DE GIORGI E.: Sulla differenziabilità e l’analiticità delle estremali degli integrali multipli regolari.Mem. Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur. 3 (1957), 25–43.Google Scholar
  7. [7]
    FAN X.: A class of De Giorgi type and Hölder continuity of minimizers of variationals withm(x)-growth condition. Preprint, Lanzhou University, China, 1995.Google Scholar
  8. [8]
    FUSCO N., SBORDONE C.: Local boundedness of minimizers in a limit case.Manuscripta Math. 69 (1990), 19–25.MATHCrossRefGoogle Scholar
  9. [9]
    FUSCO N., SBORDONE C.: Some remarks on the regularity of minima of anisotropic integrals.Comm. Partial Differential Equations 18 (1993), 154–167.CrossRefGoogle Scholar
  10. [10]
    GIAQUINTA M.: Growth conditions and regularity, a counterexample.Manuscripta Math. 59 (1987), 245–248.MATHCrossRefGoogle Scholar
  11. [11]
    GIAQUINTA M., GIUSTI E.: On the regularity of the minima of variational integrals.Acta Math. 148 (1982), 31–46.MATHCrossRefGoogle Scholar
  12. [12]
    GIAQUINTA M., GIUSTI E.: Quasi-minima.Ann. Inst. H. Poincaré, Analyse non linéaire.1 (1984), 79–107.MATHGoogle Scholar
  13. [13]
    GIUSTI E.:Metodi diretti nel calcolo delle variazioni. Pitagora, Bologna, 1994.MATHGoogle Scholar
  14. [14]
    HONG M. C.: Some remarks on the minimizers of variational integrals with non standard growth conditions.Boll. Un. Mat. Ital. (7)6-A (1992), 91–102.Google Scholar
  15. [15]
    LADYZHENSKAJA O. A., URAL’TSEVA N. N.:Equations aux dérivées partielles du type elliptique. Dunod, Paris, 1968.Google Scholar
  16. [16]
    MARCELLINI P.: Un exemple de solution discontinue d’un problème variationnel dans le cas scalaire.Preprint Univ. Florence, (1987).Google Scholar
  17. [17]
    MARCELLINI P.: Regularity of minimizers of integrals of the calculus of variations with non standard growth conditions.Arch. Rational Mech. Anal. 105 (1989), 267–284.MATHCrossRefGoogle Scholar
  18. [18]
    MARCELLINI P.: Regularity and existence of solutions of elliptic equations withp,q-growth conditions.J. Diff. Equations. 90 (1991), 1–30.MATHCrossRefGoogle Scholar
  19. [19]
    MARCELLINI P.: Regularity for elliptic equations with general growth conditions.J. Diff. Equations. 105 (1993), 296–333.MATHCrossRefGoogle Scholar
  20. [20]
    MARCUS M., MIZEL V. J.: Absolute continuity on tracks and mappings of Sobolev Spaces.Arch. Rational Mech. Anal. 45 (1972), 294–320.MATHCrossRefGoogle Scholar
  21. [21]
    MASCOLO E., PAPI G.: Local boundedness of minimizers of integrals of the calculus of variations.Ann. Mat. Pura Appl. 167 (1994), 323–339.MATHCrossRefGoogle Scholar
  22. [22]
    MORREY C. B.:Multiple integrals in the calculus of variations. Springer, Berlin, 1968.Google Scholar
  23. [23]
    MOSCARIELLO G., NANIA L.: Hölder continuity of minimizers of functionals with non standard growth conditions.Ricerche Mat. XL (1991), 259–273.Google Scholar
  24. [24]
    ZHIKOV V. V.: Averaging of functionals of the calculus of variations and elasticity theory.Math. USSR Izvestiya.29 (1987), 33–66.CrossRefGoogle Scholar
  25. [25]
    ZHIKOV V. V.: Lavrentiev phenomenon and homogenization for some variational problems.Proc. Workshop “Composite media and homogenization theory”, Trieste, 1995.Google Scholar

Copyright information

© Springer-Verlag 1997

Authors and Affiliations

  • Valeria Chiadò Piat
    • 1
  • Alessandra Coscia
    • 2
  1. 1.Dip. di MatematicaPolitecnico di TorinoTorinoItaly
  2. 2.Dip. di MatematicaUniversità di ParmaParmaItaly

Personalised recommendations