Advertisement

manuscripta mathematica

, Volume 93, Issue 1, pp 143–161 | Cite as

About the image of the total signature map in the two-dimensional case

  • Jean-Philippe Monnier
Article

Keywords

Hyperelliptic Curve Positive Component Coordinate Ring Quadratic Space Ring Extension 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [ABR]
    C. Andradas, L. Bröcker, J-M. Ruiz,Constructible sets in Real Geometry, Ergeb. Math. Grenzgeb., 3. Folge, 33. Berlin Heidelberg New York: Springer, 1996zbMATHGoogle Scholar
  2. [ABV]
    F. Acquistapace, F. Broglia, M.P. Vélez,An algorithmic criterion for basicness in dimension 2, Manus. Math.85, 45–66, 1994zbMATHCrossRefGoogle Scholar
  3. [Ba]
    R. Baeza,Quadratic forms over semi-local rings, Lecture Notes in Math. 655, Berlin Heidelberg New York: Springer 1978Google Scholar
  4. [BCR]
    J. Bochnak, M. Coste, M-F. Roy,Géométrie algébrique réelle, Ergeb. Math. Grenzgeb., 3. Folge, 12. Berlin Heidelberg New York: Springer 1987zbMATHGoogle Scholar
  5. [Br1]
    L. Bröcker,On the separation of the basic semi-algebraic sets by polynomials, Manus. Math. 60, 497–508, 1988zbMATHCrossRefGoogle Scholar
  6. [Br2]
    L. Bröcker,Real Spectra and distribution of signatures inGéométrie Algébrique réelle et formes quadratiques, 249–27, Lecture Notes in Math. 959, Springer, 1982Google Scholar
  7. [Br3]
    L. Bröcker,On basic semi-algebraic sets, Expo. Math. 9, 289–334, 1991zbMATHGoogle Scholar
  8. [CKLR]
    M.D. Choi, M. Knebush, Lam T.Y, Reznick.B,Transversal zeros and positive definite forms inGéométrie Algébrique réelle et formes quadratiques, 273–298, Lecture Notes in Math. 959, Springer, 1982Google Scholar
  9. [CS]
    J-L. Colliot-Thélène, J-J Sansuc,Fibrés quadratiques et composantes connexes rélles, Math. Ann. 244, 105–134, 1979zbMATHCrossRefGoogle Scholar
  10. [D]
    G. Dietel,Wittringe Singulärer reeller Kurven 1 et 2, Comm. in Alg.11 (21), 2393–2494, 1983CrossRefGoogle Scholar
  11. [Ka]
    M. Karoubi,Localisation de formes quadratiques 1, Ann. Sci. Ecole Norm. Sup. 4e série 7, 359–404, 1974Google Scholar
  12. [K1]
    M. Knebush,Symmetric Bilinear forms over algebraic varieties inConference on Quadratic forms, Queens Papers in Pure Appl. 46, 103–283, 1987Google Scholar
  13. [K2]
    M. Knebush,On algebraic curves over real closed fields 1, Math. Z. 150, 49–70, 1976CrossRefGoogle Scholar
  14. [M1]
    L. Mahé, Théorème de Pfister pour les variétés et anneaux de Witt réduits, Invent. Math. 85, 53–72, 1986zbMATHCrossRefGoogle Scholar
  15. [M2]
    L. Mahé,Level and Pythagoras number of some geometric rings, Math. Z. 209 (204), 481–483 (615–629), 1992zbMATHCrossRefGoogle Scholar
  16. [M3]
    L. Mahé,Signatures et composantes connexes, Math.Ann. 260, 191–210, 1982zbMATHCrossRefGoogle Scholar
  17. [Mo]
    T. Mostowski,Some properties of Nash functions, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 3, 243–266, 1976Google Scholar

Copyright information

© Springer-Verlag 1997

Authors and Affiliations

  • Jean-Philippe Monnier
    • 1
  1. 1.IRMAR (CNRS, URA 305)Université de Rennes 1, campus de BeaulieuRennes cedexFrance

Personalised recommendations