Advances in Atmospheric Sciences

, Volume 2, Issue 3, pp 402–413 | Cite as

The heating field in an asymmetric hurricane — Part I: Scale analysis

  • Krishnamurti T. N. 
  • Sheng Jian 


A closed system of equations describing an asymmetric disturbance in cylindrical geometry is expanded about a small parameter. The small parameter describes the ratio of the magnitude of divergence in the boundary layer to that above that layer. A low order system describes a gradient wind balance in the radial direction and is quasi-symmetric with respect to the pressure and temperature fields. This system can be solved as an inverse problem for a mature steady state hurricane. The procedure entails asking the questions what structure and heating distributions are required to maintain a given asymmetric distribution of the tangential velocity (i. e. the angular momentum) in steady state. The method of characteristics enables us to solve for the vertical motion. That in turn determines the radial motion from the mass continuity equation. Application of the hydrostatics to the cylindrical thermal wind equation determines the pressure and the thermal fields and finally the required heating fields are deduced from the first law. This entire system of inverse dynamics is linear although no nonlinear terms are dropped from the original direct set of equations. The real data applications of this procedure will be described in part II (to be published in the next issue).


Tangential Velocity Flight Data Order Partial Differential Equation Rain Band Frictional Torque 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Anthes, R. A.,Tropical Cyclones, Their Evolution, Structure and Effects. Sci. Press, 1982, 208 pp.Google Scholar
  2. [2]
    Hawkins, H. F. and Rubsam, D. T.,Mon. Wea. Rev.,97(1968), 617–636.CrossRefGoogle Scholar
  3. [3]
    Anthes. R. A.,The Response of a 3 level Axisymmetric Hurricane Model to Artificial Redistribution of Convective Heat Release. NOAA Tech. Memo. ERL NHRL-92, NHRL-92, National Hurricane Research Laboratory, Miami, FL, 1971, 14 pp.Google Scholar
  4. [4]
    ————,Mon. Wea. Rev.,99(1971), 617–635.CrossRefGoogle Scholar
  5. [5]
    Tuleya. R. E. and Kurihara, Y.,J. Atmos. Sci.,32(1975), 287–301.CrossRefGoogle Scholar
  6. [6]
    Jones, R. W., ——ibid.,34(1977), 1518–1527.CrossRefGoogle Scholar
  7. [7]
    ————,ibid.,,34(1977), 1528–1553.CrossRefGoogle Scholar
  8. [8]
    Madala, R. V. and Piaesek, S. A.,Tellus,27(1975), 453–468.Google Scholar
  9. [9]
    Mathur, M. B.,J. Atmos. Sci.,31(1974), 371–393.CrossRefGoogle Scholar
  10. [10]
    Fiorino, M.,The Incorporation of Satellite-sensed Surface Winds into the Real-data Initialization of a Mesoscale Hurricane Model. M. S. Thesis, The Pennsylvania State University, 1978, 121 pp.Google Scholar
  11. [11]
    Madala, R. V. and Hodur, R. M.,A Multilevel Nested Tropical Cyclone Prediction Model in σ-coordinates. Preprints 11th Tech. Conf. Hurricanes and Tropical Meteorology, Miami, Amer. Meteor. Soc., 1977, 101–103.Google Scholar
  12. [12]
    Tuleya, R. E. and Kurihara, Y.,Mon. Wea. Rev.,109(1981), 2487–2506.CrossRefGoogle Scholar
  13. [13]
    Kurihara, Y. and Tuleya, R. E. ——ibid.,109(1981), 1629–1653.CrossRefGoogle Scholar
  14. [14]
    Krishnamurti, T. N.,Tellus,13(1961), 171–180.CrossRefGoogle Scholar
  15. [15]
    ————,ibid.,,14(1962), 195–211.Google Scholar
  16. [16]
    Gray, W. M.,On the Balance of Forces and Radial Accelerations in Hurricanes. Atmospheric Sciences Research Report Number 1, Colorado State University, Fort Collins, Colorado, 1961.Google Scholar

Copyright information

© Advances in Atmospheric Sciences 1985

Authors and Affiliations

  • Krishnamurti T. N. 
    • 1
  • Sheng Jian 
    • 1
  1. 1.Department of MeteorologyFlorida State UniversityU. S. A.

Personalised recommendations