Advertisement

Mathematical Notes

, Volume 67, Issue 3, pp 309–319 | Cite as

Multiplicities and relative position of eigenvalues of a quadratic pencil of Sturm-Liouville operators

  • I. M. Nabiev
Article

Abstract

For boundary value problems generated by a second-order differential equation with regular nonseparated boundary conditions, criteria for the eigenvalues to be multiple are given and the relative position of the eigenvalues is studied.

Key words

operator pencil eigenvalue multiplicity Sturm-Liouville operator nonlocal boundary condition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. A. Marchenko,Sturm-Liouville Operators and Their Applications [in Russian], Naukova Dumka, Kiev (1977).zbMATHGoogle Scholar
  2. 2.
    G. Sh. Guseinov, “On the spectral analysis of a quadratic pencil of Sturm-Liouville operators,”Dokl. Akad. Nauk SSSR [Soviet Math. Dokl.],285, No. 6, 1292–1296 (1985).Google Scholar
  3. 3.
    M. G. Gasymov and G. Sh. Guseinov, “Reconstruction of a diffusion operator from the spectral data,”Dokl. Akad. Nauk. Azerb. SSR,37, No. 2, 19–23 (1981).zbMATHGoogle Scholar
  4. 4.
    E. A. Coddington and N. Levinson, Theory of Ordinary Differential Equations, McGraw-Hill, New York-Toronto-London (1955).zbMATHGoogle Scholar
  5. 5.
    B. M. Levitan and I. S. Sargsyan,Sturm-Liouville and Dirac Operators [in Russian], Nauka, Moscow (1988).zbMATHGoogle Scholar
  6. 6.
    G. Sh. Guseinov, “The spectrum and eigenfunction expansions for a quadratic pencil of Sturm-Liouville operators with periodic coefficients,” in:Spectral Theory of Operators and Its Applications [in Russian], Vol. 6., Baku (1985), pp. 56–97.Google Scholar
  7. 7.
    O. A. Plaksina, “A characterization of the spectrum for some boundary value problems for the Sturm-Liouville operator,”Uspekhi Mat. Nauk [Russian Math. Surveys],36, No. 2, 199–200 (1981).zbMATHGoogle Scholar
  8. 8.
    O. A. Plaksina, “Inverse spectral analysis problems for the Sturm-Liouville operator with nonseparated boundary conditions,”Mat. Sb. [Math. USSR-Sb.],131 (173), No. 1, 3–26 (1986).Google Scholar
  9. 9.
    I. M. Guseinov and I. M. Nabiev, “On a class of inverse boundary value problems for Sturm-Liouville operators,”Differentsial’nye Uravneniya [Differential Equations],25, No. 7, 1114–1120 (1989).Google Scholar
  10. 10.
    I. M. Guseinov and I. M. Nabiev, “The inverse problem for a Sturm-Liouville operator with nonseparated boundary conditions,”Izv. Akad. Nauk Azerb. SSR. Ser. Fiz.-Tekhn. i Matem. Nauk,8, No. 2, 22–29 (1987).Google Scholar
  11. 11.
    M. G. Gasymov, I. M. Guseinov, and I. M. Nabiev, “The inverse problem for a Sturm-Liouville operator with nonseparated self-adjoint boundary conditions,”Sibirsk. Mat. Zh. [Siberian Math. J.],31, No. 6, 46–54 (1990).Google Scholar
  12. 12.
    I. M. Guseinov and I. M. Nabiev, “The solution of a class of inverse Sturm-Liouville boundary value problems,”Mat. Sb. [Russian Acad. Sci. Sb. Math.],186, No. 5, 35–48 (1995).Google Scholar

Copyright information

© Kluwer Academic/Plenum Publishers 2000

Authors and Affiliations

  • I. M. Nabiev
    • 1
  1. 1.Baku State UniversityUSSR

Personalised recommendations