Mathematical Notes

, Volume 67, Issue 4, pp 417–424 | Cite as

A minimal design of order 11 on the 3-sphere

  • N. N. Andreev


We prove that the 120 vertices of the regular four-dimensional polyhedron with the Schläfli symbol {3, 3, 5} form a minimal spheric design of order 11 onS 3. It is shown that the system of equal charges at these vertices provides the minimal potential energy among all systems of 120 equal charges onS 3.

Key words

minimal designs configuration of charges extremal problems 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. H. Hardin and N. J. A. Sloane, “Expressing (a 2 + b2 + c2 + d2)3 as a sum of 23 sixth powers,”J. Combin. Theory. Ser. A,68, 481–485 (1994).MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    P. Delsarte, J. M. Goethals, and J. J. Seidel, “Spherical codes and designs,”Geom. Dedicata,6, 363–388 (1977).MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    V. A. Yudin, “Lower bounds for spherical designs,”Izv. Ross. Akad. Nauk Ser. Mat.[Russian Acad. Sci. Izv. Math.],61, No. 3, 213–223 (1997).MathSciNetGoogle Scholar
  4. 4.
    S. Nikova and P. Boyvalenkov, “Improvements of the lower bounds of the size of some spherical designs,”Mathematika Balkanica (to appear).Google Scholar
  5. 5.
    M. Berger,Géométrie, CEDIC, Nathan, Paris (1977).Google Scholar
  6. 6.
    G. N. Salikhov, “Integral formulas for the hypersphere invariant with respect to the regular 600-hedron group action,”Dokl. Akad. Nauk SSSR [Soviet Math. Dokl.],223, No. 5, 1075–1078 (1975).MathSciNetGoogle Scholar
  7. 7.
    J. J. Seidel, “Isometric embeddings and geometric designs,”Discrete Math.,136, 281–293 (1994).MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Ph. Delsarte, “Bounds for unrestricted codes, by linear programing,”Philips Res. Rep.,2, 272–289 (1972).MathSciNetGoogle Scholar
  9. 9.
    G. A. Kabatyanskii and V. I. Levenshtein, “On bounds for packings in the sphere and in the space,”Problemy Peredachi Informatsii [Problems Inform. Transmission],14, No. 1, 3–25 (1978).Google Scholar
  10. 10.
    V. I. Levenshtein, “On bounds for packings in the Euclideann-space,”Dokl. Akad. Nauk SSSR [Soviet Math. Dokl.],245, 1299–1303 (1979).MathSciNetGoogle Scholar
  11. 11.
    V. M. Sidel’nikov, “On extremal polynomials used for estimating the cardinality of codes,”Problemy Peredachi Informatsii [Problems Inform. Transmission],16, No. 3, 17–30 (1980).MathSciNetGoogle Scholar
  12. 12.
    V. A. Yudin, “The minimum for the potential energy of a system of point charges,”Diskret. Mat. [Discrete Math. Appl.],4, No. 2, 115–121 (1992).MATHMathSciNetGoogle Scholar
  13. 13.
    V. V. Arestov and A. G. Babenko, “On the Delsarte scheme for bounds of contact numbers,”Trudy Mat. Inst. Steklov [Proc. Steklov Inst. Math.],219, 44–73 (1997).MathSciNetGoogle Scholar
  14. 14.
    J. H. Conway and N. J. A. Sloane,Sphere Packings, Lattices, and Groups Springer, New York-Berlin, (1988).MATHGoogle Scholar
  15. 15.
    Ph. Delsarte and V. I. Levenstein, “Association schemes and coding theory,”IEEE Trans. Inform. Theory,44, No. 6, 2477–2504 (1998).MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    N. N. Andreev and V. A. Yudin, “Approximation problems in discrete geometry,” in:Advances in Multivariate Approximations (W. Haussmann, K. Jetter, M. Reimer, editors) (to appear).Google Scholar
  17. 17.
    L. Feies Tòth,Lagerungen in der Ebene, auf der Kugel und in Raum, Springer Verlag, Second Edition (1972).Google Scholar
  18. 18.
    L. L. Whyte, “Unique arrangements of points on a sphere,”Amer. Math. Monthly,59, No. 9, 606–611 (1952).MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    G. Björk, “Distributions of positive mass, which maximise a certain generalised energy integral,”Ark. Math.,3, 255–269 (1956).CrossRefGoogle Scholar
  20. 20.
    N. N. Andreev, “Configurations of points on the sphere with minimal energy,”Trudy Mat. Inst. Steklov [Proc. Steklov Inst. Math.],219, 27–31 (1997).Google Scholar
  21. 21.
    J. L. Walsh,Interpolation and Approximation by Rational Functions in the Complex Domain, AMS (1960).Google Scholar
  22. 22.
    N. N. Andreev, “A spherical code,”Uspekhi Mat. Nauk [Russian Math. Surveys],54, No. 1, 255–256 (1999).MathSciNetGoogle Scholar
  23. 23.
    T. Ericson and V. Zinoviev, “Spherical codes” (to appear).Google Scholar

Copyright information

© Kluwer Academic/Plenum Publishers 2000

Authors and Affiliations

  • N. N. Andreev
    • 1
  1. 1.M. V. Lomonosov Moscow State UniversityUSSR

Personalised recommendations