Mathematical Notes

, Volume 67, Issue 6, pp 786–791

Rational approximations to certain numbers

  • B. G. Tasoev
Article

Abstract

The exact order of approximation to certain numbers by rational numbers is established. The basic tool for this purpose is an expansion in regular continued fractions. Some new such expansions are also derived.

Key words

rational approximation continued-fraction expansion Euler expansion Fibonacci sequence 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. S. Davis, “Rational approximations toe,”J. Austral. Math. Soc. Ser. A,25, 497–502 (1978).MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    W. Jones and W. Thron,Continued Fractions. Analytic Theory and Applications, Addison-Wesley, Reading (USA) (1980).Google Scholar
  3. 3.
    A. A. Bukhshtab,Number Theory [in Russian], Gospedizdat, Moscow (1960).Google Scholar
  4. 4.
    I. Shiokawa, “Rational approximations to the values of certain hypergeometric functions,” in:Number Theory and Combinatorics (Japan, 1984), World Sci. Publ., Singapore (1985), pp. 353–367.Google Scholar
  5. 5.
    P. L. Ivankov, “On the approximation to the values of certain functions,”Vestnik Moskov. Univ. Ser. I Mat. Mekh. [Moscow Univ. Math. Bull.], No. 4, 12–15 (1994).Google Scholar
  6. 6.
    O. Perron,Die Lehre von den Kettenbrüchen, Chelsea, New York (1929).MATHGoogle Scholar
  7. 7.
    C. S. Davis, “A note on rational approximation,”Bull. Austral. Math. Soc. Ser. A,20, 407–410 (1979).MATHGoogle Scholar
  8. 8.
    B. G. Tasoev, “On certain problems in the theory of continued fractions,”Trudy Tbiliskogo Univ., 53–84 (1984).Google Scholar

Copyright information

© Kluwer Academic/Plenum Publishers 2000

Authors and Affiliations

  • B. G. Tasoev
    • 1
  1. 1.Institute of Applied Mathematics and Computer ScienceState Scientific Center of the Republic of North Osetiya-AlaniyaUSSR

Personalised recommendations