Mathematical Notes

, Volume 65, Issue 4, pp 516–519 | Cite as

On the spectral multiplicity function of dynamical systems

  • O. N. Ageev
Brief Communications

Key words

ergodic measure-preserving transformation essential spectral multiplicity approximation by period transformation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. A. Rokhlin,Uspekhi Mat. Nauk [Russian Math. Surveys],22, No. 5, 3–56 (1967).Google Scholar
  2. 2.
    A. M. Vershik, I. P. Kornfel'd, and Ya. G. Sinai, in:Contemporary Problems in Mathematics. Fundamental Directions [in Russian], Vol. 2, Itogi Nauki i Tekhniki, VINITI, Moscow (1985), pp. 5–111.Google Scholar
  3. 3.
    V. I. Oseledets,Dokl. Akad. Nauk SSSR [Soviet Math. Dokl.],168, No. 5, 1009–1011 (1966).Google Scholar
  4. 4.
    E. A. Robinson,Invent. Math.,72, 299–314 (1983).zbMATHCrossRefGoogle Scholar
  5. 5.
    E. A. Robinson,Israel J. Math.,56, No. 1, 75–88 (1986).zbMATHGoogle Scholar
  6. 6.
    G. R. Goodson, I. Kwiatkowski, M. Lemanczyk, and P. Liardet,Studia Math.,102, No. 2, 157–174 (1992).zbMATHGoogle Scholar
  7. 7.
    O. N. Ageev,Uspekhi Mat. Nauk [Russian Math. Surveys],49, No. 2, 143–144 (1994).Google Scholar
  8. 8.
    O. N. Ageev,Mat. Sb. [Russian Acad. Sci. Sb. Math.],188 No. 8, 13–44 (1997).Google Scholar
  9. 9.
    A. B. Katok, Ya. G. Sinai, and A. M. Stepin, in:Calculus [in Russian], Vol. 13, Itogi Nauki i Tekhniki, VINITI, Moscow (1975), pp. 129–262.Google Scholar

Copyright information

© Kluwer Academic/Plenum Publishers 1999

Authors and Affiliations

  • O. N. Ageev
    • 1
  1. 1.N. É. Bauman Moscow State Technical UniversityMoscowUSSR

Personalised recommendations