Plant Molecular Biology Reporter

, Volume 6, Issue 1, pp 10–28 | Cite as

Mesembryanthemum crystallinum, a higher plant model for the study of environmentally induced changes in gene expression

  • Hans J. Bohnert
  • James A. Ostrem
  • John C. Cushman
  • Christine B. Michalowski
  • Jutta Rickers
  • Gabriele Meyer
  • E. Jay deRocher
  • Daniel M. Vernon
  • Michael Krueger
  • Luz Vazquez-Moreno
  • Jeff Velten
  • Roswitha Hoefner
  • Jürgen M. Schmitt


Salt Stress Water Stress Crassulacean Acid Metabolism Phosphoenolpyruvate Carboxylase Cordycepin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



crassulacean acid metabolism


phosphoenolpyruvate carboxylase


ribulose-bisphosphate carboxylase

Gene names


small subunit of Rubisco


chlorophylla/b-binding protein




pyruvate-orthophosphate dikinase


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andreo, C.S., D.H. Gonzalez, A.A. Iglesias. 1987. Higher plant phosphoenolpyruvate carboxylase. FEBS Lett. 213: 1–8.CrossRefGoogle Scholar
  2. Black, C.C., N.W. Carnal and W. H. Kenyon. 1982. Compartmentation, and the regulation of CAM. In: Crassulacean acid metabolism. (eds. Ting, I.P. and M. Gibbs) Am. Soc. Plant Physiol., Rockville, MD pp. 51–68.Google Scholar
  3. Dainty, J. 1979. The ionic and water relations of plants which adjust to a fluctuating saline environment. In: Ecological processes in coastal environments (eds. Jefferies, R.L., Davy, A.J.) Blackwell Scientific Publications, Oxford. pp.201–209.Google Scholar
  4. Davies, D.D. 1979. The central role of phosphoenolpyruvate in plant metabolism. Ann. Rev. Plant Physiol. 30: 131–158.CrossRefGoogle Scholar
  5. Demmig, B. and K. Winter, 1986. Sodium, potassium, chloride and proline concentrations of chloroplasts isolated from a halophyte,Mesembryanthemum crystallinum L. Planta 168: 421–426.CrossRefGoogle Scholar
  6. DeRocher, E.J., R.T. Ramage, C.B. Michalowski, and H.J. Bohnert. 1987. Nucleotide sequence of a cDNA encodingrbcS from the desert plantMesembryanthemum crystallinum. Nucl. Acids Res. 15: 6301.PubMedCrossRefGoogle Scholar
  7. Edwards, G.E., J.G. Foster, K. Winter. 1982. Activity and intracellular compartmentation of enzymes of carbon metabolism in CAM plants. In: Crassulacean acid metabolism. (eds. Ting, I.P. and M. Gibbs) Am. Soc. Plant Physiol., Rockville, MD pp. 92–111.Google Scholar
  8. Evans, D.A. and W.R. Sharp, 1986. Applications of somaclonal variation. Biotechnology 4: 528–532.CrossRefGoogle Scholar
  9. Flores, H.E. and A.W. Galston. 1982. Polyamines and plant stress: activation of putrescine biosynthesis by osmotic shock. Science 217:1259–1261.CrossRefPubMedGoogle Scholar
  10. Flores, H.E., N.D. Young, and A.W. Galston. 1985. Polyamine metabolism and plant stress. In: Cellular and molecular biology of plant stress. (eds. Key, J.L., and T. Kosuge), A.R. Liss, New York, pp. 93–114.Google Scholar
  11. Foster, J.G., G.E. Edwards, and K. Winter. 1982. Changes in levels of phosphoenolpyruvate carboxylase with induction of Crassulacean acid metabolism inMesembryanthemum crystallinum L. Plant Cell Physiol. 23: 585–594.Google Scholar
  12. Fujita, N., T. Miwa, S. Ishijima, K. Izui, and H. Katsuki. 1984. The primary structure of phosphoenolpyruvate carboxylase ofEscherichia coli. Nucleotide sequence of theppc gene and deduced amino acid sequence. J. Biochem. 95: 909–916.PubMedGoogle Scholar
  13. Galbraith, D.W., K.R. Harkins, J.M. Maddox, N.M. Ayres, D.P. Sharma, and E. Firoozabady. 1983. Rapid flow cytometric analysis of the cell cycle in intact plant tissues. Science 220: 1049–1051.CrossRefPubMedGoogle Scholar
  14. Guerrero, F. and J.E. Mullet. 1986. Increased abscisic acid biosynthesis during plant dehydration requires transcription. Plant Physiol. 80: 588–591.PubMedGoogle Scholar
  15. Gulick, P. and J. Dvorak. 1987. Gene induction and repression by salt treatment in roots of the salinity-sensitive Chinese Spring wheat and the salinity-tolerant Chinese Spring xElytrigia elongata amphiploid. Proc. Natl. Acad. Sci. USA 84: 99–103.PubMedCrossRefGoogle Scholar
  16. Guralnick, L.J. and I.P. Ting. 1986. Seasonal response to drought and rewatering inPortulacaria afra (L.) Jacq. Oecologia 70: 85–91.CrossRefGoogle Scholar
  17. Handa, S., A.K. Handa, P.M. Hasegawa and R.A. Bressan. 1986. Proline accumulation and the adaptation of cultured plant cells to water stress. Plant Physiol 80: 938–945.PubMedGoogle Scholar
  18. Hanson, A.D. and W.D. Hitz 1982. Metabolic responses of mesophytes to plant water deficits. Ann. Rev. Plant Physiol. 33: 163–203.CrossRefGoogle Scholar
  19. Harpster, M. H. and W.C. Taylor. 1986. Maize phosphoenolpyruvate carboxylase: cloning and characterization of mRNAs encoding isozymic forms. J. Biol. Chem. 261:6132–6136.PubMedGoogle Scholar
  20. Harrington, T.R., B.R. Glick, and N.W. Lem. 1986. Molecular cloning of the phosphoenolpyruvate carboxylase gene ofAnabaena variabilis. Gene 45: 113–116.PubMedCrossRefGoogle Scholar
  21. Heun, A-M., J. Gorham, U. Lüttge, R. G. WynJones 1981. Changes of water-relation characteristics and levels of organic cytolasmic solutes during salinity induced transition ofMesembryanthemum crystallinum from C3-photosynthesis to Crassulacean acid metabolism. Oecologia 50:66–72.CrossRefGoogle Scholar
  22. Higgins, C.F., J. Cairney, D.A. Stirling, L Sutherland, and I.R. Booth. 1987. Osmotic regulation of gene expression: ionic strength as an intracellular signal? Trends Biochem. Sci. 12:339–344.CrossRefGoogle Scholar
  23. Hill, A.E. and B.S. Hill. 1976. Elimination processes by glands. Mineral ions. In: Encyclopedia of plant physiology. New Series vol. 2 part B. (eds. A. Pirson, M.H. Zimmermann), Springer-Verlag, Berlin. pp. 225–243.Google Scholar
  24. Höfner, L. Vasquez-Moreno, K. Winter, H.J. Bohnert, and J. M. Schmitt. 1987. Induction of Crassulacean acid metabolism inMesembryanthemum crystallinum by high salinity: mass increase andde novo synthesis of PEP-carboxylase. Plant Physiol. 83: 915–919.PubMedGoogle Scholar
  25. Holtum, J.A.M. and C.B. Osmond. 1981. The gluconeogenic metabolism of pyruvate during deacidification in plants with Crassulacean acid metabolism. Aust. J. Plant Physiol. 8: 31–44.Google Scholar
  26. Holtum, J.A.M. and K. Winter. 1982. Activity of enzymes of carbon metabolism during the induction of Crassulacean acid metabolism inMesembryanthemum crystallinum L. Planta 155:8–16.CrossRefGoogle Scholar
  27. Hudspeth, R.L., C.A. Glackin, J. Bonner, and J.W. Grula. 1986. Genomic and cDNA clones for maize phosphoenolpyruvate carboxylase and pyruvate, orthophosphate dikinase: Expression of different gene-family members in leaves and roots. Proc. Natl. Acad. Sci. U.S.A. 83: 2884–2888.PubMedCrossRefGoogle Scholar
  28. Izui, K., T. Miwa, M. Kajitani, N. Fujita, H. Sabe, A. Ishihama, and H. Katsuki. 1985. Promoter analysis of the phosphoenolpyruvate carboxylase gene ofEscherichia coli. Nucl. Acids Res. 13: 59–71.PubMedCrossRefGoogle Scholar
  29. Izui, K., S. Ishijima, Y. Yamaguchi, F. Katagiri, T. Murata, K. Shigesada, T. Sugiyama, and H. Katsuki. 1986. Cloning and sequence analysis of cDNA encoding active phosphoenolpyruvate carboxylase of the C4-pathway from maize. Nucl. Acids Res. 14:1615–1628.PubMedCrossRefGoogle Scholar
  30. Katagiri, F., T. Kodaki, N. Fujita, K. Izui, and H. Katsuki. 1985. Nucleotide sequence of the phosophoenolpyruvate carboxylase gene of the cyanobacteriumAnacystis nidulans. Gene 38: 265–269.PubMedCrossRefGoogle Scholar
  31. King, G.J., C.E. Hussey, and V.A. Turner. 1986. A protein induced by NaCl in suspension cultures ofNicotiana tabacum accumulates in whole plant roots. Plant Molec. Biol. 7:441–450.CrossRefGoogle Scholar
  32. Kloot, P.M. 1983. The role of common iceplant (Mesembryanthemum crystallinum) in the deterioration of medic pastures. Aust. J. Ecol. 8: 301–306.CrossRefGoogle Scholar
  33. Latzko, E. and G.J. Kelly. 1983. The many-faceted function of phosphoenolpyruvate carboxylase in C3 plants. Physiol. Veg. 21: 805–815.Google Scholar
  34. Lüttge, U., E. Fischer, E. Steudle. 1978. Membrane potentials and salt distribution in epidermal bladders and photosynthetic tissue ofMesembryanthemum crystallinum L. Plant Cell and Environment. 1: 121–129.CrossRefGoogle Scholar
  35. Lüttge, U., J.A.C. Smith, G. Marigo. 1982. Membrane transport, osmoregulation, and the control of CAM. In: Crassulacean acid metabolism. (eds. Ting, I.P. and M. Gibbs) Am. Soc. Plant Physiol., Rockville, MD. pp. 69–91.Google Scholar
  36. Monson, R.K., M.E. Rumpho, G.E. Edwards. 1983. The influence of inorganic phosphate on photosynthesis in intact chloroplasts fromMesembryanthemum crystallinum L. plants exhibiting C3 photosynthesis or Crassulacean acid metabolism. Planta 159: 97–104.CrossRefGoogle Scholar
  37. Morgan, J.M. 1984. Osmoregulation and water stress in higher plants. Annu. Rev. Plant Physiol. 35: 299–319.CrossRefGoogle Scholar
  38. Nimmo, G.A., M.B. Wilkins, C.A. Fewson and H.G. Nimmo. 1987. Persistant circadian rhythms in the phosphorylation state of phosphoenolpyruvate carboxylase fromBryophyllum fedtschenkoi leaves and in its sensitivity to inhibition by malate. Planta 170: 408–415.CrossRefGoogle Scholar
  39. O'Leary, M.H. 1982. Phosphoenolpyruvate carboxylase: An enzymologist's view. Annu. Rev. Plant Physiol. 33: 297–315.CrossRefGoogle Scholar
  40. Osmond, C.B. 1978. Crassulacean acid metabolism: a curiosity in context. Annu. Rev. Plant Physiol. 29: 379–414.CrossRefGoogle Scholar
  41. Osmond, C.B. and J.A.M. Holtum. 1981. Crassulacean acid metabolism. In: The biochemistry of plants: A comprehensive treatise. (eds. Hatch, M.D. and N.K. Boardman) volume 8, Academic Press, London-New York, pp. 283–328.Google Scholar
  42. Ostrem, J.A., S.W. Olson, J.M. Schmitt, and H.J. Bohnert. 1987a. Salt stress increases the level of translatable mRNA for phosphoenolpyruvate carboxylase inMesembryanthemum crystallinum. Plant Physiol. 84: 1270–1275.PubMedGoogle Scholar
  43. Ostrem, J.A., D.M. Vernon, S.W. Olson, H.J. Bohnert. 1987b. Proline accumulation is an early response to salt stress inM. crystallinum. Plant Physiol. S83: 280.Google Scholar
  44. Pruitt, R.E. and E.M. Meyerowitz. 1986. Characterization of the genome ofArabidopsis thaliana. J. Mol. Biol. 187: 169–183.PubMedCrossRefGoogle Scholar
  45. Quieroz, O. and J. Brulfert. 1982. Photoperiod-controlled induction and enhancement of seasonal adaptation to drought. In: Crassulacean acid metabolism. (eds. Ting, I.P. and M. Gibbs) Am. Soc. Plant Physiol., rockville, MD, pp. 208–230.Google Scholar
  46. Rains, D.W., L. Csonka, D. LeRudulier, T.P. Croughan, S.S. Yang, S.J. Stavarek, and R.C. Valentine. 1982. Osmoregulation by organisms exposed to saline stress: physiological mechanisms and genetic manipulation. In: Biosaline research: a look to the future. (ed. San Pietro, A.), Plenum Press, New York. pp. 283–302.Google Scholar
  47. Ramagopal, S. 1987. Differential mRNA transcription during salinity stress in barley. Proc. Natl. Acad. Sci. USA 84: 94–98.PubMedCrossRefGoogle Scholar
  48. Raschke, K. 1975. Stomatal action. Annu. Rev. Plant Physiol. 26: 309–340.CrossRefGoogle Scholar
  49. Rhodes, D., S. Handa, R.A. Bressan. 1986. Metabolic changes associated with adaptation of plant cells to water stress. Plant Physiol. 82: 890–903.PubMedGoogle Scholar
  50. Rhodes, D. 1987. Metabolic responses to stress. In: The biochemistry of plants: A comprehensive treatise. (ed. Davies, D.D.) volume 12. Academic Press, San Diego, New York, pp. 201–241.Google Scholar
  51. Schmitt, J.M. Michalowski, C.B., Bohnert, H.J. 1988. Gene expression during CAM induction under salt stress inMesembryanthemum: cDNA library and increased levels of mRNA for phosphoenol pyruvate carboxylase and pyruvate orthophosphate dikinase. Photosynth. Res. in press.Google Scholar
  52. Singh, N.K., A.K. Handa, P.M. Hasegawa, R.A. Bressan. 1985. Proteins associated with adaption of cultured tobacco cells to NaCl. Plant Physiol. 79: 126–137.PubMedCrossRefGoogle Scholar
  53. Singh, N.K., C. LaRosa, A.K. Handa, P.M. Hasegawa, R.A. Bressan. 1987. Hormonal regulation of protein synthesis associated with salt tolerance in plant cells. Proc. Natl. Acad. Sci. (USA) 84: 739–743.CrossRefGoogle Scholar
  54. Sipes, D.L. and I.P. Ting. 1985. Crassulacean acid metabolism and Crassulacean acid metabolism modifications inPeperomia camptotricha. Plant Physiol. 77: 59–63.PubMedGoogle Scholar
  55. Stewart, C.R., G. Voetberg, P.J. Rayapati. 1986. The effects of benzyladenine, cycloheximide, and cordycepin on wilting-induced abscisic acid and proline accumulations and abscisic acid- and salt-induced proline accumulation in barley leaves. Plant Physiol. 82: 703–707.PubMedGoogle Scholar
  56. Struve, I., A. Weber, U. Lüttge, E. Ball, J.A.C. Smith. 1985. Increased vacuolar ATPase activity correlated with CAM induction inMesembryanthemum crystallinum andKalanchoë blossfeldiana cv. Tom Thumb. J. Plant Physiol. 117: 451–468.Google Scholar
  57. Struve, I. and U. Lüttge. 1987. Characteristics of MgATP2− dependent electrogenic proton transport in tonoplast vesicles of the facultative crassulacean-acid-metabolism plantMesembryanthemum crystallinum L. Planta 170: 111–120.CrossRefGoogle Scholar
  58. Theologis, A. 1986. Rapid gene regulation by auxin. Annu. Rev. Plant Physiol. 37: 407–438.CrossRefGoogle Scholar
  59. Ting, I.P. 1981. Effects of abscisic acid on CAM inPortulacaria afra. Photosynth. Res. 2: 39–48.CrossRefGoogle Scholar
  60. Ting, I.P. (1985) Crassulacean acid metabolism. Ann. Rev. Plant Physiol. 36: 595–622.Google Scholar
  61. Ting, I.P. and Z. Hanscom. 1977. Induction of acid metabolism inPortulacaria afra. Plant Physiol. 59: 511–514.PubMedCrossRefGoogle Scholar
  62. Ting, I.P. and L. Rayder. 1982. Regulation of C3 to CAM shifts. In: Crassulacean acid metabolism. (eds. Ting, I.P. and M. Gibbs) Am. Soc. Plant Physiol. Rockville, MD. pp. 193–207.Google Scholar
  63. Treichel, S. 1986. The influence of NaCl on delta1-pyrroline-5-carboxylate reductase in proline-accumulating cell suspension cultures ofMesembryanthemum nodiflorum and other halophytes. Physiol. Plant. 67: 173–181.CrossRefGoogle Scholar
  64. Vernon, D.M., J.A. Ostrem, J.M. Schmitt; and H.J. Bohnert. 1988. PEPCase transcript levels inMesembryanthemum crystallinum decline rapidly upon relief from salt stress. Plant Physiol. in press.Google Scholar
  65. Vivrette, N.J. and C.H. Muller. 1977. Mechanisms of invasion and dominance of coastal grassland byMesembryanthemum crystallinum. Ecol. Mon. 47: 301–318.CrossRefGoogle Scholar
  66. von Willert, D.J., S. Treichel, G.O. Kirst, E. Curdts 1976. Environmentally controlled changes of phosphenolpyruvate carboxylases inMesembryanthemum. Phytochemistry 15: 1435–1436.CrossRefGoogle Scholar
  67. von Willert, D.J E. Brinckmann, E-D Schulze. 1979. Ecophysiological investigations of plants in the coastal desert of southern Africa. Ion content and Crassulacean acid metabolism. In: Ecological processes in coastal environments (eds. R.L. Jefferies, A.J. Davy). Blackwell Scientific Publications, Oxford. pp. 321–331.Google Scholar
  68. Wiggens, I.L. 1980. In: Flora of Baja California. Stanford University Press, Stanford, CA. pp. 85–87.Google Scholar
  69. Winter, K. and D.J. von Willert. 1972. NaCl induzierter Crassulaceen-Säurestoffwechsel beiMesembryanthemum crystallinum. Z. Pflanzenphysiol. 67: 166–170.Google Scholar
  70. Winter, K. 1973a. Zum Problem der Ausbildung des Crassulaceensaurestoffwechsels beiMesembryanthemum crystallinum unter NaCl-einfluss. Planta 109: 135–145.CrossRefGoogle Scholar
  71. Winter, K. 1973b. CO2-Fixierungsreaktionen bei der SalzpflanzeMesembryanthemum crystallinum unter variierten Aussenbedingungen. Planta 114: 75–85.CrossRefGoogle Scholar
  72. Winter, K. 1974. Einfluss von Wasserstress auf die aktivität der Phosphoenolpyruvat-Carboxylase beiMesembryanthemum crystallinum (L.). Planta 121: 147–153.CrossRefGoogle Scholar
  73. Winter, K., U. Lüttge, E. Winter, J.H. Troughton. 1978. Seasonal shift from C3 photosynthesis to Crassulacean acid metabolism inMesembryanthemum crystallinum growing in its natural environment. Oecologia. 34: 225–237.CrossRefGoogle Scholar
  74. Winter, K. 1979a. Photosynthetic and water relationships of higher plants in a saline environment. In: Ecological processes in coastal environments (eds. R.L. Jefferies, A.J. Davy). Blackwell Scientific Publications, Oxford. pp. 297–320.Google Scholar
  75. Winter, K. 1979b. Effect of different Co2 regimes on the induction of crassulacean acid metabolism inMesembryanthemum crystallinum L. Aust. J. Plant Physiol. 6: 589–594.CrossRefGoogle Scholar
  76. Winter, K. 1982. Properties of phosphoenolpyruvate carboxylase in rapidly prepared, desalted leaf extracts of the Crassulacean acid metabolism plantMesembryanthemum crystallinum L. Planta 154: 298–308.CrossRefGoogle Scholar
  77. Winter, K., J.G. Foster, G.E. Edwards, J.A.M. Holtum 1982a. Intracellular localization of enzymes of carbon metabolism inMesembryanthemum crystallinum exhibiting C3 photosynthetic characteristics or performing Crassulacean acid metabolism. Plant Physiol. 69: 300–307.PubMedGoogle Scholar
  78. Winter, K., J.G. Foster, M.R. Schmitt, G.E. Edwards. 1982b. Activity and quantity of ribulose bisphosphate carboxylase- and phosphenolpyryuvate carboxylase- protein in two Crassulacean acid metabolism plants in relation to leaf age, nitrogen nutrition, pnd point in time during a day/night cycle. Planta 154: 309–317.CrossRefGoogle Scholar

Copyright information

© International Society for Plant Molecular Biology. All rights reserved 1988

Authors and Affiliations

  • Hans J. Bohnert
    • 1
  • James A. Ostrem
    • 1
  • John C. Cushman
    • 1
  • Christine B. Michalowski
    • 1
  • Jutta Rickers
    • 1
  • Gabriele Meyer
    • 1
  • E. Jay deRocher
    • 1
  • Daniel M. Vernon
    • 1
  • Michael Krueger
    • 1
  • Luz Vazquez-Moreno
    • 2
  • Jeff Velten
    • 3
  • Roswitha Hoefner
    • 4
  • Jürgen M. Schmitt
    • 4
  1. 1.Department of BiochemistryUniversity of ArizonaTucsonUSA
  2. 2.CIADSonoraMexico
  3. 3.PGELNew Mexico State UniversityLas CrucesUSA
  4. 4.Botanical InstituteUniversity of WürzburgWürzburgFRG

Personalised recommendations