Siberian Mathematical Journal

, Volume 38, Issue 1, pp 106–113 | Cite as

On the HallDπ-property for finite groups

  • V. D. Mazurov
  • D. O. Revin


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Hall, “Theorems like Sylow's,” Proc. London Math. Soc.,6, No. 11, 286–304 (1956).MATHCrossRefGoogle Scholar
  2. 2.
    Unsolved Problems in Group Theory: Kourovka Notebook [in Russian], Inst. Mat. (Novosibirsk), Novosibirsk (1995).Google Scholar
  3. 3.
    L. A. Shemetkov, “Sylow's properties of finite groups,” Mat. Sb.,76, No. 2, 271–287 (1968).Google Scholar
  4. 4.
    L. A. Shemetkov, “On Sylow's properties of finite groups,” Dokl. Akad. Nauk BSSR,16, No. 10, 881–883 (1972).MATHGoogle Scholar
  5. 5.
    B. Hupper, Endliche Gruppen, Springer, Berlin (1976).Google Scholar
  6. 6.
    F., Gross, “Conjugacy of odd order Hall subgroups,” Bull. London Math. Soc.,19 (4), No. 79, 311–319 (1987).MATHCrossRefGoogle Scholar
  7. 7.
    J. Thompson, “Hall subgroups of the symmetric groups,” J. Combin. Theory Ser. A,1, 271–279 (1966).MATHGoogle Scholar
  8. 8.
    W. Feit and J. G. Thompson, “Solvability of groups of odd order,” Pacific J. Math.,13, No. 3, 775–1029 (1963).MATHGoogle Scholar
  9. 9.
    J. H. Walter, “The characterization of finite groups with abelian Sylow 2-groups,” Ann. of Math. (2),89, 405–514 (1969).CrossRefGoogle Scholar
  10. 10.
    V. M. Levchuk and Ya. N. Nuzhin, “On the structure of the Ree groups,” Algebra i Logika,24, No. 1, 26–41 (1985).Google Scholar
  11. 11.
    J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, and R. A. Wilson, Atlas of Finite Groups, Oxford (1985).Google Scholar
  12. 12.
    F. Gross, “On a conjecture of Philip Hall,” Proc. London Math. Soc.,52 (3), 464–494 (1986).MATHCrossRefGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • V. D. Mazurov
  • D. O. Revin

There are no affiliations available

Personalised recommendations